
Java Programming
For Beginners

New Sections: Java New Features (10,..,15,16,..), Spring,
Spring Boot and REST API

1

GOAL: Help YOU learn Programming
Basics and Best Practices
Problem Solving

Simple Design and Debugging

Help you have fun!

APPROACH: Hands-on Step By Step
Learn Problem Solving
Practice 200+ Code Examples

Test Your Learning: Exercises
Learn to Debug Programs : Github Page

Build real world applications

By the end of the course, you will be a
really good programmer!

Learn Java Programming

2

YOUR Success = OUR Success

98,000+ Learners with 46% 5 STAR Reviews
Last Year: 42,000+ active learners & 14 million learning minutes
"Great mix of theory and exercises!"
"Interactive learning with the help of puzzles"
"Never thought taking an online course will be so helpful. "
"Builds confidence in people who fear programming"

RECOMMENDATION: Bit of Patience in the first hour!

3

4

Step 01: Installing Java on Windows
Step 02: Installing Java on MacOS
Step 03: Installing Java on Linux
Step 04: Troubleshooting
Alternative:

Installing Java

https://tryjshell.org/

5

https://tryjshell.org/

I love programming:
You get to solve new problems every day.
Learn something new everyday!

Steps in Problem Solving:
Step I: Understand the Problem
Step II: Design

Break the Problem Down

Step III: Write Your Program (and Test)
Express Your Solution: Language Specifics (Syntax)

Let's solve multiple problems step by step!
Learning to Program = Learning to ride a bike

First steps are the most difficult

Pure Fun afterwards!

Programming and Problem Solving

6

Challenge 1 : Print Multiplication Table
5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

7

Where do we start? : Print Multiplication Table

Step 1: Calculate value of "5 * 5"
Step 2: Print "5 * 5 = 25"
Step 3: Do this 10 times

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

8

Do you know?: How do Python programmers start learning
Python?

Python shell: That's why Python is easy to learn

From Java 9: Java is equally easy to learn - JShell
Java REPL (Read Eval Print Loop)
Type in a one line of code and see the output

Makes learning fun (Make a mistake and it immediately tells you whats wrong!)

All great programmers make use of JShell

In this course: We use JShell to get started
By Section 5, you will be comfortable with Java syntax

We will start using Eclipse as the Java IDE!

JShell

9

Java Primitive Types
Type of
Values

Java
Primitive
Type

Size
(in
bits)

Range of Values Example

Integral byte 8 -128 to 127 byte b = 5;

Integral short 16 -32,768 to 32,767 short s =
128;

Integral int 32 -2,147,483,648 to 2,147,483,647 int i =
40000;

Integral long 64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

long l =
2222222222;

Float float 32 ±3.40282347E+38F. NOT precise float f =
4.0f

Float double 64 ±1.79769313486231570E+308. NOT precise double d = 67.0

10

Print Multiplication Table - Solution 1

 jshell> int i
 i ==> 0
 jshell> for (i=0; i<=10; i++) {
 ...> System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 ...> }
 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 2
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50

11

JVM, JRE And JDK
JRE = JVM + Libraries + Other Components

JVM runs your program bytecode
Libraries are built-in Java utilities that can be used within any program you create.
System.out.println() was a method in java.lang, one such utility.
Other Components include tools for debugging and code profiling (for memory management
and performance)

JDK = JRE + Compilers + Debuggers
JDK refers to the Java Development Kit. It's an acronym for the bundle needed to compile
(with the compiler) and run (with the JRE bundle) your Java program.

Remember:
JDK is needed to Compile and Run Java programs
JRE is needed to Run Java Programs
JVM is needed to Run Bytecode generated from Java programs

12

Most Popular Open Source Java IDE
Download:

Recommended:
"Eclipse IDE for Enterprise Java and Web Developers"

Troubleshooting
Use 7Zip if you have problems with unzipping
Unzip to root folder "C:\Eclipse" instead of a long path
Guide:

Installing Eclipse

https://www.eclipse.org/downloads/packages/

https://wiki.eclipse.org/Eclipse/Installation#Troubleshooting

13

https://www.eclipse.org/downloads/packages/
https://wiki.eclipse.org/Eclipse/Installation#Troubleshooting

Print Multiplication Table - Solution 2
public class MultiplicationTable {
 public static void print() {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", 5, i, 5*i).println();
 }
 }

 public static void print(int number) {
 for(int i=1; i<=10;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d * %d = %d", number, i, number*i).println();
 }
 }
}

14

Print Multiplication Table - Refactored (No Duplication)
package com.in28minutes.firstjavaproject;

public class MultiplicationTable {
 public static void print() {
 print(5, 1, 10);
 }

 public static void print(int number) {
 print(number, 1, 10);
 }

 public static void print(int number, int from, int to) {
 for(int i=from; i<=to;i++) {
 System.out.printf("%d X %d = %d", number, i, number*i).println();
 }
 }
}

15

Object Oriented Programming (OOP)

A class is a template.
In above example, Planet is a class

An object is an instance of a class.
earth and venus are objects.

name, location and distanceFromSun compose object state.

rotate() and revolve() define object's behavior.

Fields are the elements that make up the object state. Object behavior is
implemented through Methods.

 class Planet
 name, location, distanceFromSun // data / state / fields
 rotate(), revolve() // actions / behavior / methods

 earth : new Planet
 venus : new Planet

16

Object Oriented Programming (OOP) - 2

Each Planet has its own state:
name: "Earth", "Venus"

location : Each has its own orbit

distanceFromSun : They are at unique, different distances from the sun

Each Planet has its own unique behavior:
rotate() : They rotate at different rates (and in fact, different directions!)

revolve() : They revolve round the sun in different orbits, at different speeds

 class Planet
 name, location, distanceFromSun // data / state / fields
 rotate(), revolve() // actions / behavior / methods

 earth : new Planet
 venus : new Planet

17

Java keeps improving:
Java 10, Java 11, Java 12, ..., Java 17, Java 18 ...

Developing Java Applications is Evolving as well:
Spring
Spring Boot
REST API

How about building a Real World Java Project?
REST API with Spring and Spring Boot

Let's get started!

Next Few Sections

18

Java Versioning
Version Release Data Notes

JDK 1.0 January 1996

J2SE 5.0 September 2004 5 Releases in 8 years

Java SE 8 (LTS) March 2014 Most important Java Release

Java SE 9 September 2017 4 Releases in 13 years

Java SE 10 March 2018 Time-Based Release Versioning

Java SE 11 (LTS) September 2018 Long Term Support Version (Every 3 years)

Java SE 12 March 2019

...

Java SE 16 March 2021

Java SE 17 (LTS) September 2021

19

Java New Features
Version Release Data Important New Features

J2SE 5.0 Sep 2004 Enhanced For Loop, Generics, Enums, Autoboxing

Java SE 8 (LTS) Mar 2014 Functional Programming - Lambdas & Streams, Static methods in interface

Java SE 9 Sep 2017 Modularization (Java Platform Module System)

Java SE 10 Mar 2018 Local Variable Type Inference

Java SE 14 Mar 2020 Switch Expressions (Preview in 12 and 13)

Java SE 15 Sep 2020 Text Blocks (Preview in 13)

Java SE 16 Mar 2021 Record Classes (Preview in 14 and 15)

All Java Versions - API Improvements, Performance and Garbage Collection Improvements

20

Introduced in Java 9
Goals:

Modularize JDK (IMPORTANT)
rt.jar grew to 60+ MB by Java 8

Modularize applications

Modularizing JDK:
java --list-modules

java.base

java.logging

java.sql

java.xml

jdk.compiler

jdk.jartool

jdk.jshell

java -d java sql

Java Modularization - Overview

21

Java Modularization - Remember
Module Descriptor - module-info.java: Defines metadata about the module:

requires module.a; - I need module.a to do my work!
requires transitive module.a; - I need module.a to do my work

AND my users also need access to module.a

exports - Export package for use by other modules
opens package.b to module.a - Before Java 9, reflection can be used to find details about
types (private, public and protected). From Java 9, you can decide which packages to expose:

Above statement allows module.a access to perform reflection on public types in package.b

Advantages
Compile Time Checks

For availability of modules

Better Encapsulation
Make only a subset of classes from a module available to other modules

Smaller Java Runtime
Use only the modules of Java that you need!

22

Local Variable Type Inference

Java compiler infers the type of the variable at compile time
Introduced in Java 10
You can add final if you want
var can also be used in loops
Remember:

You cannot assign null
var is NOT a keyword

Best Practices:
Good variable names

Minimize Scope
Improve readability for chained expressions

// List<String> numbers = new ArrayList<>(list);
var numbers = new ArrayList<>(list);

23

Switch Expression

Create expressions using switch statement
Released in JDK 14

Preview - JDK 12 and 13

Remember:
No fallthrough

Use yield or -> to return value

String monthName = switch (monthNumber) {
case 1 -> {
 System.out.println("January");
 // yield statement is used in a Switch Expression
 // break,continue statements are used in a Switch Statement
 yield "January"; // yield mandatory!
}
case 2 -> "February";
case 3 -> "March";
case 4 -> "April";
default -> "Invalid Month";
};

24

Text Blocks

Simplify Complex Text Strings
Released in JDK 15

Preview - JDK 13 and 14

Remember:
First Line : """ Followed by line terminator

"""abc or """abc""" in First Line are NOT valid

Automatic Alignment is done
Trailing white space is stripped

You can use text blocks where ever you can use a String

System.out.println("\"First Line\"\nSecond Line\nThird Line");
System.out.println("""
 "First Line"
 Second Line
 Third Line"""
);

25

Records

Eliminate verbosity in creating Java Beans
Public accessor methods, constructor, equals, hashcode and toString are automatically
created

You can create custom implementations if you would want

Released in JDK 16
Preview - JDK 14 and 15

Remember:
Compact Constructors are only allowed in Records
You can add static fields, static initializers, and static methods

BUT you CANNOT add instance variables or instance initializers

HOWEVER you CAN add instance methods

record Person(String name, String email, String phoneNumber) { }

26

Build a Loose Coupled Hello World Gaming App
with Modern Spring Approach
Get Hands-on with Spring and understand:

Why Spring?
Terminology

Tight Coupling and Loose Coupling
IOC Container
Application Context
Component Scan
Dependency Injection
Spring Beans
Auto Wiring

Getting Started with Spring Framework - Goals

27

Design Game Runner to run games:
Mario, Super Contra, PacMan etc

Iteration 1: Tightly Coupled
GameRunner class

Game classes: Mario, Super Contra, PacMan etc

Iteration 2: Loose Coupling - Interfaces
GameRunner class
GamingConsole interface

Game classes: Mario, Super Contra, PacMan etc

Iteration 3: Loose Coupling - Spring
Spring framework will manage all our objects!

GameRunner class

GamingConsole interface
Game classes: Mario, Super Contra, PacMan etc

Loose Coupling with Spring Framework

28

Question 1: What's happening in the background?
Let's debug!

Question 2: What about the terminology? How does it relate
to what we are doing?

Dependency, Dependency Injection, IOC Container, Application Context,
Component Scan, Spring Beans, Auto Wiring etc!

Question 3: Does the Spring Framework really add value?
We are replacing 3 simple lines with 3 complex lines!

Question 4: What if I want to run Super Contra game?
Question 5: How is Spring JAR downloaded?

Magic of Maven!

Spring Framework - Questions

29

Question 1: What's happening in the background?
Let's Debug:

Identified candidate component class: file [GameRunner.class]
Identified candidate component class: file [MarioGame.class]

Creating shared instance of singleton bean 'gameRunner'
Creating shared instance of singleton bean 'marioGame'

Autowiring by type from bean name 'gameRunner' via constructor to bean named
'marioGame'
org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean
with name 'gameRunner' defined in file [GameRunner.class]

Unsatisfied dependency expressed through constructor parameter 0;

nested exception is:org.springframework.beans.factory.NoUniqueBeanDefinitionException

No qualifying bean of type 'com.in28minutes.learnspringframework.game.GamingConsole' available

expected single matching bean but found 3: marioGame,pacManGame,superContraGame

30

@Component (..): Class managed by Spring framework
Dependency: GameRunner needs GamingConsole impl!

GamingConsole Impl (Ex: MarioGame) is a dependency of GameRunner

Component Scan: How does Spring Framework find
component classes?

It scans packages! (@ComponentScan("com.in28minutes"))

Dependency Injection: Identify beans, their dependencies
and wire them together (provides IOC - Inversion of Control)

Spring Beans: An object managed by Spring Framework
IoC container: Manages the lifecycle of beans and dependencies

Types: ApplicationContext (complex), BeanFactory (simpler features - rarely used)

Autowiring: Process of wiring in dependencies for a Spring Bean

Question 2: Spring Framework - Important Terminology

31

-
In Game Runner Hello World App, we have very few classes
BUT Real World applications are much more complex:

Multiple Layers (Web, Business, Data etc)
Each layer is dependent on the layer below it!

Example: Business Layer class talks to a Data Layer class
Data Layer class is a dependency of Business Layer class

There are thousands of such dependencies in every application!

With Spring Framework:
INSTEAD of FOCUSING on objects, their dependencies and wiring

You can focus on the business logic of your application!

Spring Framework manages the lifecycle of objects:
Mark components using annotations: @Component (and others..)

Mark dependencies using @Autowired
Allow Spring Framework to do its magic!

Ex: Controller > BusinessService (sum) > DataService (data)!

Question 3: Does the Spring Framework really add value?

32

Try it as an exercise
@Primary

Playing with Spring:
Exercise:

Dummy implementation for PacMan and make it Primary!

Debugging Problems:
Remove @Component and Play with it!

Question 4: What if I want to run Super Contra game?

33

What happens if you manually download Spring JAR?
Remember: Spring JAR needs other JARs
What if you need to upgrade to a new version?

Maven: Manage JARs needed by apps (application dependencies)
Once you add a dependency on Spring framework, Maven would download:

Spring Framework and its dependencies

All configuration in pom.xml
Maven artifacts: Identified by a Group Id, an Artifact Id!

Important Features:
Defines a simple project setup that follows best practices
Enables consistent usage across all projects

Manages dependency updates and transitive dependencies

Terminology Warning: Spring Dependency vs Maven Dependency

Question 5: How is Spring JAR downloaded? (Maven)

34

Constructor-based : Dependencies are set
by creating the Bean using its Constructor
Setter-based : Dependencies are set by
calling setter methods on your beans
Field: No setter or constructor.
Dependency is injected using reflection.
Which one should you use?

Spring team recommends Constructor-based
injection as dependencies are automatically set
when an object is created!

Exploring Spring - Dependency Injection Types

35

Spring Modules

Spring Framework is divided into modules:
Core: IoC Container etc
Testing: Mock Objects, Spring MVC Test etc

Data Access: Transactions, JDBC, JPA etc
Web Servlet: Spring MVC etc
Web Reactive: Spring WebFlux etc

Integration: JMS etc

Each application can choose the modules they want to make use of
They do not need to make use of all things everything in Spring framework!

36

Spring Projects

Spring Projects: Spring keeps evolving (REST API > Microservices > Cloud)
Spring Boot: Most popular framework to build microservices
Spring Cloud: Build cloud native applications

Spring Data: Integrate the same way with different types of databases : NoSQL and Relational
Spring Integration: Address challenges with integration with other applications
Spring Security: Secure your web application or REST API or microservice

37

Loose Coupling: Spring manages beans and dependencies
Make writing unit tests easy!
Provides its own unit testing project - Spring Unit Testing

Reduced Boilerplate Code: Focus on Business Logic
Example: No need for exception handling in each method!

All Checked Exceptions are converted to Runtime or Unchecked Exceptions

Architectural Flexibility: Spring Modules and Projects
You can pick and choose which ones to use (You DON'T need to use all of
them!)

Evolution with Time: Microservices and Cloud
Spring Boot, Spring Cloud etc!

Why is Spring Popular?

38

Spring JDBC - Example
JDBC example

Spring JDBC example

public void deleteTodo(int id) {
 PreparedStatement st = null;
 try {
 st = db.conn.prepareStatement(DELETE_TODO_QUERY);
 st.setInt(1, id);
 st.execute();
 } catch (SQLException e) {
 logger.fatal("Query Failed : " + DELETE_TODO_QUERY, e);
 } finally {
 if (st != null) {
 try {st.close();}
 catch (SQLException e) {}
 }
 }
}

public void deleteTodo(int id) {
 jdbcTemplate.update(DELETE_TODO_QUERY, id);
}

39

Goal: 10,000 Feet overview of Spring Framework
Help you understand the terminology!

Dependency

Dependency Injection (and types)
Autowiring

Spring Beans

Component Scan

IOC Container (Application Context)

We will play with other Spring Modules and Projects later in the course

Advantages: Loosely Coupled Code (Focus on Business Logic),
Architectural Flexibility and Evolution with time!

Spring Framework - Review

40

Build a Hello World App in Modern Spring
Boot Approach
Get Hands-on with Spring Boot

Why Spring Boot?
Terminology

Spring Initializr
Auto Configuration
Starter Projects
Actuator
Developer Tools

Getting Started with Spring Boot - Goals

41

Hands-on: Understand Power of Spring Boot

Let's Build a Hello World App using Spring Initializr
Setup BooksController

// http://localhost:8080/courses
[
 {
 "id": 1,
 "name": "Learn Microservices",
 "author": "in28minutes"
 }
]

42

World Before Spring Boot!

Setting up Spring Web Projects before Spring Boot was NOT easy!
Define maven dependencies and manage versions for frameworks

spring-webmvc, jackson-databind, log4j etc

Define web.xml (/src/main/webapp/WEB-INF/web.xml)
Define Front Controller for Spring Framework (DispatcherServlet)

Define a Spring context XML file (/src/main/webapp/WEB-INF/todo-servlet.xml)
Define a Component Scan (<context:component-scan base-package="com.in28minutes" />)

Install Tomcat or use tomcat7-maven-plugin plugin (or any other web server)
Deploy and Run the application in Tomcat

How does Spring Boot do its Magic?
Spring Boot Starter Projects
Spring Boot Auto Configuration

https://github.com/in28minutes/SpringMvcStepByStep/blob/master/Step15.md#pomxml

43

https://github.com/in28minutes/SpringMvcStepByStep/blob/master/Step15.md#pomxml

Goal of Starter Projects: Help you get a project up and running
quickly!

Web Application - Spring Boot Starter Web
REST API - Spring Boot Starter Web
Talk to database using JPA - Spring Boot Starter Data JPA
Talk to database using JDBC - Spring Boot Starter JDBC
Secure your web application or REST API - Spring Boot Starter Security

Manage list of maven dependencies and versions for different
kinds of apps:

Spring Boot Starter Web: Frameworks needed by typical web applications
spring-webmvc, spring-web, spring-boot-starter-tomcat, spring-boot-starter-json

Spring Boot Starter Projects

44

Spring Boot provides Auto Configuration
Basic configuration to run your application using the
frameworks defined in your maven dependencies
Auto Configuration is decided based on:

Which frameworks are in the Class Path?
What is the existing configuration (Annotations etc)?

An Example: (Enable debug logging for more details):
If you use Spring Boot Starter Web, following are auto
configured:

Dispatcher Servlet (DispatcherServletAutoConfiguration)

Embedded Servlet Container - Tomcat is the default
(EmbeddedWebServerFactoryCustomizerAutoConfiguration)

Default Error Pages (ErrorMvcAutoConfiguration)

Bean to/from JSON conversion
(J k H M C C fi i)

Spring Boot Auto Configuration

45

How do you deploy your application?
Step 1 : Install Java
Step 2 : Install Web/Application Server

Tomcat/WebSphere/WebLogic etc

Step 3 : Deploy the application WAR (Web ARchive)
This is the OLD WAR Approach

Complex to setup!

Embedded Server - Simpler alternative
Step 1 : Install Java
Step 2 : Run JAR file

Make JAR not WAR (Credit: Josh Long!)
Embedded Server Examples:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-undertow

Spring Boot Embedded Servers

46

Spring Boot Actuator: Monitor and manage
your application in your production

Provides a number of endpoints:
beans - Complete list of Spring beans in your app
health - Application health information
metrics - Application metrics
mappings - Details around Request Mappings

Spring Boot DevTools: Increase developer
productivity

Why do you need to restart the server for every code
change?

More Spring Boot Features

47

Spring Boot vs Spring MVC vs Spring
Spring Framework Core Feature: Dependency Injection

@Component, @Autowired, IOC Container, ApplicationContext, Component Scan etc..
Spring Modules and Spring Projects: Good Integration with Other Frameworks
(Hibernate/JPA, JUnit & Mockito for Unit Testing)

Spring MVC (Spring Module): Build web applications in a decoupled approach
Dispatcher Servlet, ModelAndView and View Resolver etc

Spring Boot (Spring Project): Build production ready applications quickly
Starter Projects - Make it easy to build variety of applications

Auto configuration - Eliminate configuration to setup Spring, Spring MVC and other projects!
Enable production ready non functional features:

Actuator : Enables Advanced Monitoring and Tracing of applications.

Embedded Servers - No need for separate application servers!

Default Error Handling

48

Goal: 10,000 Feet overview of Spring Boot
Help you understand the terminology!

Starter Projects

Auto Configuration

Actuator

DevTools

Advantages: Get started quickly with production ready
features!

Spring Boot - Review

49

JUnit
In 5 Steps

50

Large applications can have 1000s of code files and
millions of lines of code
Testing: Check app behavior against expected behavior

Option 1: Deploy the complete application and test
This is called System Testing or Integration Testing

Option 2: Test specific units of application code independently
Examples: A specific method or group of methods
This is called Unit Testing
Advantages of Unit Testing

Finds bug early (run under CI)

Easy to fix bugs

Reduces costs in the long run

Most Popular Java Frameworks: JUnit and Mockito

Recommended: Option 1 + Option 2

Introduction to Unit Testing with JUnit

51

JPA and Hibernate
in 10 Steps

52

Build a Simple JPA App using
Modern Spring Boot Approach
Get Hands-on with JPA, Hibernate
and Spring Boot

World before JPA - JDBC, Spring JDBC
Why JPA? Why Hibernate? (JPA vs
Hibernate)
Why Spring Boot and Spring Boot Data
JPA?
JPA Terminology: Entity and Mapping

Getting Started with JPA and Hibernate

53

01: Create a Spring Boot Project
with H2
02: Create COURSE table
03: Use Spring JDBC to play with
COURSE table
04: Use JPA and Hibernate to play
with COURSE table
05: Use Spring Data JPA to play
with COURSE table

Learning JPA and Hibernate - Approach

54

We added Data JPA and H2 dependencies:
Spring Boot Auto Configuration does some magic:

Initialize JPA and Spring Data JPA frameworks
Launch an in memory database (H2)
Setup connection from App to in-memory database

Launch a few scripts at startup (example: data.sql,
schema.sql)

Remember - H2 is in memory database
Does NOT persist data
Great for learning
BUT NOT so great for production

Spring Boot Auto Configuration Magic

55

JDBC
Write a lot of SQL queries! (delete from todo where id=?)
And write a lot of Java code

Spring JDBC
Write a lot of SQL queries (delete from todo where id=?)
BUT lesser Java code

JPA
Do NOT worry about queries

Just Map Entities to Tables!

Spring Data JPA
Let's make JPA even more simple!
I will take care of everything!

JDBC to Spring JDBC to JPA to Spring Data JPA

56

JDBC to Spring JDBC
JDBC example

Spring JDBC example

public void deleteTodo(int id) {
 PreparedStatement st = null;
 try {
 st = db.conn.prepareStatement("delete from todo where id=?");
 st.setInt(1, id);
 st.execute();
 } catch (SQLException e) {
 logger.fatal("Query Failed : ", e);
 } finally {
 if (st != null) {
 try {st.close();}
 catch (SQLException e) {}
 }
 }
}

public void deleteTodo(int id) {
 jdbcTemplate.update("delete from todo where id=?", id);
}

57

JPA Example

Spring Data JPA Example

@Repository
public class PersonJpaRepository {

 @PersistenceContext
 EntityManager entityManager;

 public Person findById(int id) {
 return entityManager.find(Person.class, id);
 }

 public Person update(Person person) {
 return entityManager.merge(person);
 }

 public Person insert(Person person) {
 return entityManager.merge(person);
 }

 public void deleteById(int id) {........

public interface TodoRepository extends JpaRepository<Todo, Integer>{

58

JPA defines the specification. It is an API.
How do you define entities?
How do you map attributes?
Who manages the entities?

Hibernate is one of the popular
implementations of JPA
Using Hibernate directly would result in a
lock in to Hibernate

There are other JPA implementations (Toplink, for
example)

Hibernate vs JPA

59

Maven

60

Things you do when writing code each day:
Create new projects
Manages dependencies and their versions

Spring, Spring MVC, Hibernate,...
Add/modify dependencies

Build a JAR file
Run your application locally in Tomcat or Jetty or ..
Run unit tests
Deploy to a test environment
and a lot more..

Maven helps you do all these and more...

What is Maven?

61

Let's explore Project Object Model - pom.xml
1: Maven dependencies: Frameworks & libraries used in a project

Ex: spring-boot-starter-web and spring-boot-starter-test
Why are there so many dependencies in the classpath?

Answer: Transitive Dependencies

(REMEMBER) Spring dependencies are DIFFERENT

2: Parent Pom: spring-boot-starter-parent
Dependency Management: spring-boot-dependencies
Properties: java.version, plugins and configurations

3: Name of our project: groupId + artifactId
1: groupId: Similar to package name

2: artifactId: Similar to class name

Why is it important?
Think about this: How can other projects use our new project?

Activity: help:effective-pom, dependency:tree & Eclipse UI
Let's add a new dependency: spring-boot-starter-web

Exploring Project Object Model - pom.xml

62

When we run a maven command, maven build life
cycle is used
Build LifeCycle is a sequence of steps

Validate
Compile
Test

Package
Integration Test

Verify
Install

Deploy

Exploring Maven Build Life Cycle

63

Maven follows Convention over Configuration
Pre defined folder structure
Almost all Java projects follow Maven structure (Consistency)

Maven central repository contains jars (and others) indexed
by artifact id and group id

Stores all the versions of dependencies

repositories > repository
pluginRepositories > pluginRepository

When a dependency is added to pom.xml, Maven tries to
download the dependency

Downloaded dependencies are stored inside your maven local repository

Local Repository : a temp folder on your machine where maven stores the
jar and dependency files that are downloaded from Maven Repository.

How does Maven Work?

64

mvn --version
mvn compile: Compile source files
mvn test-compile: Compile test files

OBSERVCE CAREFULLY: This will also compile source files

mvn clean: Delete target directory
mvn test: Run unit tests
mvn package: Create a jar
mvn help:effective-pom
mvn dependency:tree

Important Maven Commands

65

Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven

Example: Create executable jar package
Example: Run Spring Boot application
Example: Create a Container Image
Commands:

mvn spring-boot:repackage (create jar or war)
Run package using java -jar

mvn spring-boot:run (Run application)

mvn spring-boot:start (Non-blocking. Use it to run integration tests.)

mvn spring-boot:stop (Stop application started with start command)

mvn spring-boot:build-image (Build a container image)

Spring Boot Maven Plugin

66

Version scheme - MAJOR.MINOR.PATCH[-MODIFIER]
MAJOR: Significant amount of work to upgrade (10.0.0 to 11.0.0)
MINOR: Little to no work to upgrade (10.1.0 to 10.2.0)

PATCH: No work to upgrade (10.5.4 to 10.5.5)
MODIFIER: Optional modifier

Milestones - M1, M2, .. (10.3.0-M1,10.3.0-M2)

Release candidates - RC1, RC2, .. (10.3.0-RC1, 10.3.0-RC2)

Snapshots - SNAPSHOT

Release - Modifier will be ABSENT (10.0.0, 10.1.0)

Example versions in order:
10.0.0-SNAPSHOT, 10.0.0-M1, 10.0.0-M2, 10.0.0-RC1, 10.0.0-RC2, 10.0.0, ...

MY RECOMMENDATIONS:
Avoid SNAPSHOTs

Use ONLY Released versions in PRODUCTION

How are Spring Releases Versioned?

67

REST API
REST API: Architectural Style for the Web

Resource: Any information (Example: Courses)
URI: How do you identify a resource? (/courses, /courses/1)

You can perform actions on a resource (Create/Get/Delete/Update). Different HTTP Request
Methods are used for different operations:

GET - Retrieve information (/courses, /courses/1)

POST - Create a new resource (/courses)

PUT - Update/Replace a resource (/courses/1)

PATCH - Update a part of the resource (/courses/1)

DELETE - Delete a resource (/courses/1)

Representation: How is the resource represented? (XML/JSON/Text/Video etc..)

Server: Provides the service (or API)
Consumer: Uses the service (Browser or a Front End Application)

68

Spring and Spring Boot Release Cycles
What is the difference between these?

2.5.0 (SNAPSHOT)
2.4.5 (M3)

2.4.4

Release Number: MAJOR.MINOR.FIX
Spring and Spring Boot Release Cycle:

SNAPSHOT (versions under development) > Mile Stones > Released Version

Recommendation - Do NOT use SNAPSHOTs or M1 or M2 or M3
Prefer released versions!

69

JDBC
Write a lot of SQL queries!
And write a lot of Java code

Spring JDBC
Write a lot of SQL queries
BUT lesser Java code

JPA
Do NOT worry about queries

Just Map Entities to Tables!

Spring Data JPA
Let's make JPA even more simple!
I will take care of everything!

JDBC to Spring JDBC to JPA to Spring Data JPA

70

JDBC to Spring JDBC
JDBC example

Spring JDBC example

public void deleteTodo(int id) {
 PreparedStatement st = null;
 try {
 st = db.conn.prepareStatement(DELETE_TODO_QUERY);
 st.setInt(1, id);
 st.execute();
 } catch (SQLException e) {
 logger.fatal("Query Failed : " + DELETE_TODO_QUERY, e);
 } finally {
 if (st != null) {
 try {st.close();}
 catch (SQLException e) {}
 }
 }
}

public void deleteTodo(int id) {
 jdbcTemplate.update(DELETE_TODO_QUERY, id);
}

71

JPA Example

Spring Data JPA Example

@Repository
@Transactional
public class PersonJpaRepository {

 @PersistenceContext
 EntityManager entityManager;

 public Person findById(int id) {
 return entityManager.find(Person.class, id);
 }

 public Person update(Person person) {
 return entityManager.merge(person);
 }

 public Person insert(Person person) {
 return entityManager.merge(person);
 }

 public void deleteById(int id) {........

public interface TodoRepository extends JpaRepository<Todo, Integer>{

72

We added Data JPA and H2 dependencies:
Spring Boot Auto Configuration does some magic:

Initialize JPA and Spring Data JPA frameworks
Launch an in memory database (H2)
Setup connection from App to in-memory database

Launch a few scripts at startup (example: data.sql)

Remember - H2 is in memory database
Does NOT persist data
Great for learning
BUT NOT so great for production
Let's see how to use MySQL next!

Spring Boot Auto Configuration Magic - Data JPA

73

Java keeps improving:
Java 10, Java 11, Java 12, ...

Java Project - REST API in Modern Approach:
Spring
Spring Boot

Do NOT forget to leave a Review!

Congratulations

74

What's Next? - Don't Stop Learning!

Step I: Build more applications:
REST API and Microservices
Full Stack Applications (Angular and React)

Mobile Applications
Learn Unit Testing (JUnit and Mockito) and Clean Code

Step II: Learn Java Frameworks in Depth:
Spring & Spring Boot

Hibernate and JPA

Step III: Go Cloud (AWS, Azure and Google Cloud)
Step IV: Learn DevOps

https://github.com/in28minutes/learn

75

https://github.com/in28minutes/learn

Hurrah! You can do coding exercises
directly on Udemy

Without needing an IDE!

We are adding in a lot of exercises!
Each coding exercise has:

Instructions (or problem statement)
Hints

Solution Explanation
Solution video (watch me solve the exercise!)

NEW FEATURE: Coding exercises without IDE installation

76

Next exercise will help you get familiar
with Udemy Coding Exercises IDE

Open it in a new window and practice while
you are watching this video!

Advantages:
Your solution is automatically checked

You get additional practice
Additional skills you'll improve:

Reading

Documentation

NEW FEATURE: Coding exercises without IDE installation - 2

77

Embrace the challenge: Each problem is an opportunity to learn
It's okay to fail: Failure is a part of the learning process
Practice makes perfect: The more you code, the better you'll get
Be patient: Learning to code takes time and effort
Have fun: Coding can be a lot of fun, enjoy the process
Don't give up.: If you're struggling, keep at it
Break it down: Break a complex problem into smaller parts
Be persistent.: Don't give up on a problem just because it's difficult

Celebrate progress: Acknowledge your achievements, no matter how
small
Stay curious: Keep exploring new technologies, programming
languages, and concepts

My 10 Rules for Happy Programmers

78

What Next?

79

80

