) v < I}
W N =

% | -+ Million
s 9"
Master 1 st

Microservices 5

JAVA / Python

-
JAVA Microservices
-

DevOps

) Ranga Karanam
il Founder of in28minutes
g 4B 2B 3 2B ¢
Google Cloud

28

Minutes

TOP TOOLS FOR MICROSERVICES DEVELOPMENT |

SPrRING BooT

\-,}"

o

SpriNg CLouD

- =4 -
4 h
.
’ " N
b '

&

Docker

»
[E .
o v
~
.~

.
-
-
.
.
[

d 1N

5

KUBERNETES

«28

Minutes

CHALLENGES IN LEARNING MICROSERIICES

LoTs oF CONCEPTS

REST AP, Service Discovery, API Gateway,
Naming Server, Circuit Breakers, Load
& Balancing, Security...

@ Diverse DepLoYMENT OPTIONS
Containers, Orchestration, Cloud-native
Ve, environments

NEEDS KNOWLEDGE OF TooLs &

PLATFORMS

Spring Boot, Spring Cloud, Docker, Kubernetes,
Cloud, and more

28

Minutes

WE MADE IT EASY FOR YOU

LEARN

FUNDAMENTALS
O BuiLp

LEARNED &
MASTERED

1']} I MICROSERVICE MICROSERVICES
! - =
N ' PROJECTS
= _ | ‘ o
j : '
‘\]
BEGINNER O :
%]

BUILD MICROSERVICE
PROJECTS, | 115 NP7 Sesmmmpm,l |

28

Minutes

Learning Microservices can be tricky
Lots of new terminology, tools &
frameworks

With time, we forget things

NAVIGATING THE TRICKY PATH OF MICROSERVICES |

 Active learning -

think & make notes

Review the presentation
once in a while

THE IN28MINUTES APPROACH |

UNDERSTAND THE FUNDAMENTALS

Beautiful Presentations

HANDS-0ON LEARNING

You Build Amazing Projects

ReEGULAR REVIEW

Quizzes and Exercises

28

Minutes

‘il =

REST API
(Spring Boot)

STEP BY STEP LEARNING |

Microservices
(Spring Cloud)

Kubernetes

| &

1=

Regular Updates

«28

Minutes

d I

250K+
Learners

P T T T L L T T T

Q Amazing Reviews

AMAZING FEEDBACK

|t's great that Ranga is
constantly addmg to :t

Great |earning
experience m CIe r& Slmpl

Exceeded my expec
in every way

t@

. 28
FASTEST Raﬂpmps tﬂjﬂ;ﬂ:tes.com Minutes

? o
O| A| |
Google Cloud Azure AWS
Certifications Certifications Certifications
Java Full Stack Java Microservices
; .

Web Services

Is the Todo Web Application a Web Service?
Delivers HTML output: Not consumable by

IS THIS A WEB SERVICE? - TRY 1 |

Service delivered over the web?

other applications

Todo Web App is NOT a Web Service!

Definition is NOT just a "Service
delivered over the web"

EEEm e e

AWS

DevOps

React

Update

Update

Update

Delete

Delete

Delete

28

Minutes

28

IS THIS A WEB SERVICE? - TRY 2|

What if | create and share a JAR? T
Needs Other Dependencies: Database, NOT a Web Service: Sharing a JAR

Queves, ..

is NOT a web service approach!

Communication of Changes: Needs a
process to handle future updates to code

Not Platform independent: What if the
consumer is using .Net or Python or JS?

\S
g Wes LAYER

BusINESs LAYER

DaTA LAYER

DATABASE

28

IS THIS A WEB SERVICE? - TRY 3 |

What if the Todo application is provide an

output in @ format that is consumable b :
P e by . » That's where we get into the
other application? : :
, concept of a web service!
APPLICATION OTHER
JAVA ApPs \
qE Topo ServiIcE

DATABASE

WHAT IS A WEB SERUICE?

W3C definition: Software system designed to support interoperable machine-to-machine interaction over a network

APPLICATION JAVA OTHER APPS

Y Topo Service

DATABASE

ﬁegs: All three are important j

Designed for machine-to-machine (or
application-to application) interaction

Should be interoperable (Not platform

dependent)

Should allow communication over a
network

28

Minutes

28

MAKING WEB SERUICES PLATFORM INDEPENDENT |

33 The communication (request and response) should be
platform independent

® T ® B somethingxml

Consumer 1 3 XML e

</getCourseDetailsRequest>

e e L L L T I R

® O ® [somethingjson
V. i i ’
Web RN " g
i JLPO’V : @ JSON o mide: 1
Service -, : o
o, 5 ,Wo
A ’}, E .y
E "::i:fhﬂn'.cr"
‘]

Consumer 2

KEY WEB SERICES TERMINOLOGY |

D R L LR L LR S LR SRR Request <=+svnennnaa-
XMLor JSONor ...

---------------------------------- Response ------------

Web Service

3 REQUEST

- Input to a web service
: RESPONSE
s

Output from the web service

| MessaGe ExcHANGE FORMAT
’ The format used for communication

(XML, JSON, .etc)

consumer

Service ProviDER (OR SERVER)
Entity providing the web service

SeErVICE CONSUMER
Entity consuming the web service

28

Minutes

TWO WEB SERVICES CATEGORIES |

[O/ -
Consumer
SOAP WEB SER\”CES REST WEB SER\”CES
(33 Use SOAP-XML as request and response format (3 Buildon Top of HTTP. Use HTTP methods (GET,

® L J [H sSOAP_Request_ Response_structurexmi

<S50AP-ENV:

</ns2
</ SOAP-ENV
</ SOAP-ENV

POST, DELETE, ..) for executing operations

(33 Retrieve Todos for a User - GET /users/Ranga

(33 Create a new User - POST /users

(33 Deletea User-DELETE /users

28

Minutes

Minutes

Spring Boot
in 10(ish) Steps

’_ Getting Started with Spring Boot

e WHY Spring Boot?
= You can build web apps & REST API WITHOUT Spring
Boot

= What is the need for Spring Boot?
e WHAT are the goals of Spring Boot?

e HOW does Spring Boot work?

e COMPARE Spring Boot vs Spring MVC vs
Spring

! Getting Started with Spring Boot - Approach

e 1: Understand the world before Spring Boot (10000 Feet)
e 2: Create a Spring Boot Project
e 3: Build a simple REST APl using Spring Boot
e 4: Understand the MAGIC of Spring Boot
= Spring Initializr
= Starter Projects
= Auto Configuration

= Developer Tools
m Actuator

28

Minutes

‘_ World Before Spring Boot!

e Setting up Spring Projects before Spring
Boot was NOT easy!

e We needed to configure a lot of things
before we have a production-ready
application

World Before Spring Boot - 1 - Dependency Management i

<dependency>
<groupIld>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>6.2.2.RELEASE</version>

</dependency>

<dependency>
<groupId>com.fasterxml. jackson.core</groupld>
<artifactId>jackson-databind</artifactId>
<version>2.13.3</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1l.2.17</version>

</dependency>

e Manage frameworks and versions
= REST API - Spring framework, Spring MVC framework, JSON binding framework, ..

= Unit Tests - Spring Test, Mockito, JUnit, ...

World Before Spring Boot - 2 - web.xml 28

<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>contextConfiglLocation</param—-name>
<param-value>/WEB-INF/todo-servlet.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>dispatcher</servlet—-name>
<url-pattern>/x</url-pattern>
</servlet—-mapping>

e Example: Configure DispatcherServlet for Spring MVC

World Before Spring Boot - 3 - Spring Configuration wid

<context:component-scan base-package="com.in28minutes" />

<bean
class="org.springframework.web.servlet.view.InternalResourceViewResolver"'>

<property name="prefix">
<value>/WEB-INF/views/</value>
</property>
<property name="suffix">
<value>.jsp</value>
</property>
</bean>

e Define your Spring Configuration
= Component Scan

= \iew Resolver

World Before Spring Boot - 4 - NFRs 28

<plugin>
<groupIld>org.apache.tomcat.maven</groupId>
<artifactId>tomcat7-maven-plugin</artifactId>
<version>2.2</version>
<configuration>
<path>/</path>
<contextReloadable>true</contextReloadable>
</configuration>
</plugin>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>

<version>1l.2.17</version>
</dependency>

e Logging
e Error Handling
e Monitoring

’_ World Before Spring Boot!

e Setting up Spring Projects before Spring
Boot was NOT easy!
= 1: Dependency Management (pom.xml)

= 2: Define Web App Configuration (web.xml)
= 3: Manage Spring Beans (context.xml)
= 4: Implement Non Functional Requirements (NFRs)

e AND repeat this for every new project!

e Typically takes a few days to setup for each
project (and countless hours to maintain)

Minuies

’ Understanding Power of Spring Boot

// http://localhost:8080/courses
[

{
"id": 1,
"name": "Learn AWS",
"author": "in28minutes"
}

]

e 1: Create a Spring Boot Project
e 2:Build a simple REST API using Spring Boot

Minuies

’ What's the Most Important Goal of Spring Boot? =

e Help you build PRODUCTION-READY apps QUICKLY
= Build QUICKLY

o Spring Initializr

o Spring Boot Starter Projects

o Spring Boot Auto Configuration
o Spring Boot DevTools

= Be PRODUCTION-READY

o Logging

o Different Configuration for Different Environments
o Profiles, ConfigurationProperties

o Monitoring (Spring Boot Actuator)

O LN]

Minutes

Spring Boot
BUILD QUICKLY

Exploring Spring Boot Starter Projects

e | need a lot of frameworks to build application features:
= Build a REST API: | need Spring, Spring MVC, Tomcat, JSON conversion...

= Write Unit Tests: | need Spring Test, JUnit, Mockito, ...

e How can | group them and make it easy to build applications?
= Starters: Convenient dependency descriptors for diff. features

e Spring Boot provides variety of starter projects:

= Web Application & REST API - Spring Boot Starter Web (spring-webmvc,
spring-web, spring-boot-starter-tomcat, spring-boot-starter-json)

Unit Tests - Spring Boot Starter Test

Talk to database using JPA - Spring Boot Starter Data JPA

Talk to database using JDBC - Spring Boot Starter JDBC

= Secure your web application or REST API - Spring Boot Starter Security

Exploring Spring Boot Auto Configuration i

e | need lot of configuration to build Spring app:

» H org.springframework.boct.autoconfigure
» H3 org.springiramewark boot.autoconfigure.admin
. . » H3 ora.springframewark boot.autoconfigure.amap
= Component Scan, DispatcherServlet, Data Sources, JSON Conversion e e
p 9 p 9 9 9 eee » H3 ora.springiramework boot.autoconfigure.availability
» §3 ora.springframewark boot.autoconfigure.batch
» 3 ora.springiramewark boot.autoconfigure.cache
° ° ° » 3 ora.springiramework boot.autoconfigure.cassandra
. 7 b 3 ora.springiramewark boot.autoconfigure.codec
ow can | simplify this? B
» f2 org.springframework boct.autoconfigure.context
¥ 3 org springiramework boot.autoconfigure.couchbase
. . ° . ¥ H3 org.springiramewark boot.autoconfigure.dac
= Auto Configuration: Automated configuration for your app S
° » [org.springframework.boot.autoconfigure.data.cassandra
» [arg.springframework.boet.auteconfigure.data.couchbase
o Decid ed ba Sed O n . » [org.springframework.boct.autoconfigure.data.elasticsearch
. » B org.springframework.boct.autoconfigure.data.jdbe
» B org.springframework.boct.autoconfigure.data.jpa
H H » f3 org.springframework boct.autocenfigure.data.dap
o Which frameworks are in the Class Path? e —_—.
W H org.springframework boct.autocenfigure.data.neod]
. . . o . . » H3 org.springframework.boct.autoconfigure.data.r2doe
o What is the existing configuration (Annotations etc)? > 18 o springhramavork boo autoconfgure dataed's
» H org.springframework ooot.autoconfigure.data.rest
» H org.springframework poct.autoconfigure.data.solr
° » §3 org.springiramework boot.autoconfigure.data.web
° E X a m p l e . S p rl n g B O Ot St a rt e r W e b » i org springtrameork boot autcconfigure.dlsgnostics.analyzer
° » 3 ora.springiramewark boot.autoconfigure.domain
» H3 ora.springiramework boot.autoconfigure.elasticsearch
» H3 org.springiramework boot.autoconfigure.elasticsearch.rest
° . . . » H org.springtramework.boot.autoconfigure. flyway
Dispatcher Servlet (DispatcherServletAutoConfiguration EmsImmmmIin
b 3 org.springiramework boot.autoconfigure.groovy.template.
» 3 ora.springframework boot.autoconfigure.gson
» 3 org springiramework boot.autoconfigure.n2

Embedded Servlet Container - Tomcat is the default e
(EmbeddedWebServerFactoryCustomizerAutoConfiguration)

» {3 org.springframework.boct.autoconfigure. hitp.codec

Default Error Pages (ErrorMvcAutoConfiguration)

Bean<->JSON
(JacksonHttpMessageConvertersConfiguration)

Understanding the Glue - @SpringBootApplication

e Questions:

= Whois launching the Spring Context?

= Whois triggering the component scan?

= Who is enabling auto configuration?

e Answer: @SpringBootApplication
= 1: @SpringBootConfiguration: Indicates that a class provides Spring Boot

application @Configuration.

= 2: @EnableAutoConfiguration
Application Context,

Enable auto-configuration of the Spring

= 3: @ComponentScan: Enable component scan (for current package, by

default

¥ (34 spring-boot-autoconfigure-2.4.4.jar - (Usersfrangakaranam/.m2/re
» H org.springframework.boct.autoconfigure
» H3 org.springtramewark boot.autoconfigure.admin
» H3 org.springframework boot.autoconfigure.amap
» H3 org.springframework boot autoconfigure.aop
» H3 org.springframework boot autoconfigure.availability
» H3 org.springframework boot autoconfigure.batch
» H3 org.springiramewark boot autoconfigure.cache
b H3 org.springframework boot.autoconfigure.cassandra
b H3 org.springtramewark boot autoconfigure.codec
» H3 org.springtramework boot autoconfigure.condition
» f2 org.springframework boct.autoconfigure.context
¥ [org.springframewark. boct.autoconfigure.couchbase
¥ [org.springframework.boot.autoconfigure.dac
» {3 org.springframework.boct.autoconfigure.data
» {3 org.springframework.boct.autoconfigure.data.cassandra
¥ [org.springframework.boct.autoconfigure.data.couchbase
¥ B org.springframework.boct.autoconfigure.data.elasticsearch
¥ [org.springframework.boct.autoconfigure.data.jdbe
» B org.springframework.boct.autoconfigure.data.jpa
» f3 org.springframework boct.autocenfigure.data.dap
» H3 org.springframework boct.autocenfigure.data.menge
W H org.springframework boct.autocenfigure.data.neod]
» H3 org.springframework.boct.autoconfigure.data.r2doe
» H3 org.springframework.boot.autoconfigure.data.redis
» H org.springframework ooot.autoconfigure.data.rest
» H org.springframework poct.autoconfigure.data.solr
» H org.springframewark boot.autoconfigure.data.web
» H3 org.springframework boot autoconfigure.diagnostics.analyzer
» H3 org.springframewark boot.autoconfigure.domain
» H3 org.springframework boot autoconfigure.elasticsearch
» H3 org.springframework boot.autoconfigure.elasticsearch.rest
» H3 org.springframework boot.autoconfigure.flyway
» H3 org.springframewark boot.autoconfigure freemarker
b H3 org.springtramework boot autoconfigure.groovy.template
» H3 org.springtramework boot autoconfigure.gsan
» H3 org.springframewark. bot.autoconfigure.n2
» {2 org.springframework boot.autoconfigure.hateoas
¥ [org.springframewark boct.autoconfigure. hazelcast
» {3 org.springframework boct.autoconfigure.hitp
» {3 org.springframework.boct.autoconfigure. hitp.codec

28

Min

32

Minutes

!_ Build Faster with Spring Boot DevTools

e |ncrease developer productivity
e Why do you need to restart the server @

manually for every code change?

e Remember: For pom.xml dependency
changes, you will need to restart server
manually

Minutes

Spring Boot
PRODUCTION-READY

Managing App. Configuration using Profiles

Applications have different environments: Dev, QA,
Stage, Prod, ...

Different environments need different configuration:
= Different Databases

Environments

h 4
lIIf €
o
<

= Different Web Services —
How can you provide different configuration for

different environments?
= Profiles: Environment specific configuration

How can you define externalized configuration for

your application?
= ConfigurationProperites: Define externalized configuration

w
=]
=]
m
—

2
[=]
a
c
Q

Simplify Deployment with Spring Boot Embedded Servers wid

e How do you deploy your application?
= Step 1:Install Java

WAR Approach (OLD)

= Step 2: Install Web/Application Server
o Tomcat/WebSphere/WebLogic etc

= Step 3: Deploy the application WAR (Web ARchive)
o Thisisthe OLD WAR Approach
o Complex to setup!

e Embedded Server - Simpler alternative

= Step 1:Install Java

= Step 2:Run JARfile JAR

= Make JAR not WAR (Credit: Josh Long!) (Embedded Server - Tomeat .)

= Embedded Server Examples: Java

o spring-boot-starter-tomcat
o spring-boot-starter-jetty

o <nrino-hnnt-<tarter-iindertow

’ Monitor Applications using Spring Boot Actuator -

e Monitor and manage your application in your
production

e Provides a number of endpoints:
= beans - Complete list of Spring beans in your app

= health - Application health information
= metrics - Application metrics
= mappings - Details around Request Mappings

Understanding Spring Boot vs Spring MVC vs Spring 28,

e Spring Boot vs Spring MVC vs Spring: What's in it?
= Spring Framework: Dependency Injection
o @Component, @Autowired, Component Scan etc..

o Just Dependency Injection is NOT sufficient (You need other frameworks to build apps)

o Spring Modules and Spring Projects: Extend Spring Eco System
o Provide good integration with other frameworks (Hibernate/JPA, JUnit & Mockito for Unit Testing)

= Spring MVC (Spring Module): Simplify building web apps and REST API
o Building web applications with Struts was very complex
o @Controller, @RestController, @RequestMapping("/courses")
= Spring Boot (Spring Project): Build PRODUCTION-READY apps QUICKLY
o Starter Projects - Make it easy to build variety of applications
o Auto configuration - Eliminate configuration to setup Spring, Spring MVC and other frameworks!

o Enable non functional requirements (NFRs):
o Actuator: Enables Advanced Monitoring of applications
o Embedded Server: No need for separate application servers!
o Logging and Error Handling

o Profiles and ConfigurationProperties

Spring Boot - Review

e Goal: 10,000 Feet overview of Spring Boot

= Help you understand the terminology!
o Starter Projects

o Auto Configuration
o Actuator

o DevTools

e Advantages: Get started quickly with production ready
features!

&) spring

28

Minutes

‘ 28

Building REST API
with Spring Boot

Building REST API with Spring Boot - Goals e

e WHY Spring Boot?
= You can build REST API WITHOUT Spring Boot
= Whatis the need for Spring Boot?

e HOW to build a great REST API?

= |dentifying Resources (/users, /users/{id}/posts)

® localhast:B0A0users

= |dentifying Actions (GET, POST, PUT, DELETE,...) {

"id": 1,
"name": "Adam",

» Defining Request and Response structures | Tpirehbate" 12022 05 16
{
= Using appropriate Response Status (200, 404, 500, ..)
"birthDate": "2022-08-16"
= Understanding REST API Best Practices o
o Thinking from the perspective of your consumer et Mot

"birthDate": "2022-08-16"

o Validation, Internationalization - i18n, Exception Handling, HATEOAS, .
Versioning, Documentation, Content Negotiation and a lot more!

Building REST API with Spring Boot - Approach

e 1:Build 3 Simple Hello World REST API
= Understand the magic of Spring Boot

= Understand fundamentals of building REST API with Spring Boot
o @RestController, @RequestMapping, @PathVariable, JSON conversion

e 2:Build a REST API for a Social Media Application

= Design and Build a Great REST API
o Choosing the right URI for resources (/users, /users/{id}, /users/{id}/posts)

o Choosing the right request method for actions (GET, POST, PUT, DELETE, ..)
o Designing Request and Response structures

o Implementing Security, Validation and Exception Handling

= Build Advanced REST API Features
o Internationalization, HATEOAS, Versioning, Documentation, Content Negotiation, ...
e 3: Connect your REST API to a Database
= Fundamentals of JPA and Hibernate
m |lse H? and MvSOI as databases

@ localhost:E0AMNUsers

"id": 1,
"name" : "Adam",
"birthDate": "2022-08-16"

"id": 2,
"name": "Eve",
"birthDate": "2022-08-16"

"id": 3,
"name" : "Jack",
"birthDate": "2022-08-16"

28

Minutes

What's Happening in the Background?

Let's explore some Spring Boot Magic: Enable Debug Logging
= WARNING: Log change frequently!

1: How are our requests handled?

= DispatcherServlet - Front Controller Pattern
o Mapping servlets: dispatcherServlet urls=[/]

o Auto Configuration (DispatcherServlietAutoConfiguration)

2: How does HelloWorldBean object get converted to JSON?
= @ResponseBody + JacksonHttpMessageConverters

o Auto Configuration (JacksonHttpMessageConvertersConfiguration)
3: Who is configuring error mapping?
= Auto Configuration (ErrorMvcAutoConfiguration)

4: How are all jars available(Spring, Spring MVC, Jackson, Tomcat)?
= Starter Projects - Spring Boot Starter Web (spring-webmvc, spring-web, spring-
boot-starter-tomcat, spring-boot-starter-json)

28

Minutes

. . . . 28
! Social Media Application REST API
e Build a REST API for a
Social Media Application o
® Key Resources: J;:,"bi.r‘thDute": "2022-08-16"
= Users oo e,
u POStS | "birthDate": "2022-08-16"
e Key Details:

"birthDate": "2022-08-16"

= User: id, name, birthDate
m Post: id, description

!_ Request Methods for REST API

e GET - Retrieve details of a resource
e POST - Create a new resource e

"name": "Adam",
"birthDate": "2022-08-16"

e PUT - Update an existing resource

e PATCH - Update part of a resource e e,
e DELETE - Delete a resource g s

"birthDate": "2022-08-16"

Social Media Application - Resources & Methods 28

e Users REST API

m Retrieve all Users

(D localhosi-E0AD Usars

o GET /users : g 1
1 : s
m Create a User "name": "Adam",
o POST/users birthDate": "2022-08-16
= Retrieve one User {
o GET /users/{id} -> Jusers/1 "”j :..2’..E)
name": "Eve",
m Delete a User "birthDate": "2022-08-16"
o DELETE /users/{id} -> /users/1 j{"
= Posts REST API "id": 3,

"name" : "Jack",

o Retrieve all posts for a User ,
"birthDate": "2022-08-16"

o GET /users/{id}/posts

o Create a post for a User]
o POST /users/{id}/posts

o Retrieve details of a post
o GET /users/{id}/posts/{post_id}

Response Status for REST API

e Return the correct response status

Resource is not found => 404
Server exception => 500

m Validation error =>400

e Important Response Statuses

200 — Success

201 — Created

204 — No Content

401 — Unauthorized (when authorization fails)
400 — Bad Request (such as validation error)
404 — Resource Not Found

500 — Server Error

IT.i.dll: 11‘
"name" : "Adam",
"birthDate": "2022-08-16"

"id": 2,
Ifnqme" : IIEVE” ,
"birthDate": "2027-08-16"

"id": 3,
"name": "Jack",
"birthDate": "2022-08-16"

28

Minutes

Advanced REST API Features

Documentation
Content Negotiation

Internationalization - i18n

Versioning
HATEOAS

Static Filtering
Dynamic Filtering
Monitoring

28

Minutes

lacalhost:-E0B0/users

IT.i-dll: 1‘
"name" : "Adam",
"birthDate": "2022-08-16"

"id": 2,
Ifnqmell : IIEVE“ .
"birthDate": "2027-08-16"

Iridll: 3,
"name": "Jack",
"birthDate": "2022-08-16"

REST APl Documentation

e Your REST API consumers need to understand your
REST API:

m Resources

= Actions
= Request/Response Structure (Constraints/Validations)

e Challenges:

= Accuracy: How do you ensure that your documentation is upto
date and correct?

= Consistency: You might have 100s of REST API in an enterprise.
How do you ensure consistency?

e Options:

= 1: Manually Maintain Documentation
o Additional effort to keep it in sync with code

m 2: Generate from code

/ipa/users f{id}/posts

(path)

28

Minutes

REST APl Documentation - Swagger and Open API

e Quick overview:

= 2011: Swagger Specification and
Swagger Tools were introduced

= 2016: Open API

Specification

created based on Swagger Spec.

o Swagger

Tools

continue to exist

(ex:Swagger Ul)

= OpenAPI Specification: Standard,

language-agnostic interface
o Discover and understand REST API

o Earlier called Swagger Specification

= Swagger Ul: Visualize and interact

with your REST API

o Can be generated from your OpenAPI
Specification

@ lecalhost:B0B0/v3/api-docs

"openapi": "3.0.1",

"info": {es},
"servers": [«],
"paths": {
"/posts": {
"get": {es},
"post": {e}
}s
"/posts/{id}":
"get": {es},
"put™: {esl,

"delete": {es},

"patch": {es}
},

DS /iparusers /{id}/posts

(path)

I application'hal+json

Cortrols Accept header

Example Valug | Schama

28

Minutes

Content Negotiation

e Same Resource - Same URI

= HOWEVER Different Representations are possible
o Example: Different Content Type - XML or JSON or ..

o Example: Different Language - English or Dutch or ..

e How can a consumer tell the REST API provider

what they want?
= Content Negotiation

e Example: Accept header (MIME types -
application/xml, application/json, ..)
e Example: Accept-Language header (en, nl, fr, ..)

© localhost:EOA0usars

"id": 1,
"name": "Adam",
"birthDate": "2022-08-16"

"'i_d": 2‘
"name": "Eve",
"birthDate": "720727-08-16"

"i.d": 3‘.
"name”: "Jack",
"birthDate": "2022-08-16"

v<item>

Internationalization - i18n 28
e Your REST APl might have consumers from
around the world e

e How do you customize it to users around the === '
world?

= Internationalization - i18n m
® Typlcally HTTP Request Header - AcC Cep'l:— EA reepavie = | 1
Language is used oo
= Accept-Language - indicates natural language and ... o
locale that the consumer prefers .
= Example: en - English (Good Morning)
= Example: nl - Dutch (Goedemorgen) =
m Fxamnle: fr - French (Raniniir) mre— g

Versioning REST API
e You have built an amazing REST API

= You have 100s of consumers

= You need to implement a breaking change
o Example: Split name into firstName and lastName

e SOLUTION: Versioning REST API
= Variety of options
o URL
o Request Parameter
o Header

o Media Type
m No Clear Winner!

@ localhost:8080/v1/person

{
"name": "Bob Charlie"
}
@ localhost:BOBO/v2/person
{
"name": {
"firstName": "Bob",
"lastName": "Charlie"
}
}

28

Minutes

Versioning REST API - Options 28,

e URI Versioning - Twitter -
= http://localhost:8080/v1/person st “Grartie
= http://localhost:8080/v2/person

Request Parameter versioning - Amazon
= http://localhost:8080/person?version=1

= http://localhost:8080/person?version=2

(Custom) headers versioning - Microsoft
= SAME-URL headers=[X-API-VERSION=1]

= SAME-URL headers=[X-API-VERSION=2]

Media type versioning (a.k.a “content negotiation” or “accept

header”) - GitHub
= SAME-URL produces=application/vnd.company.app-vl+json

= SAME-URL produces=application/vnd.company.app-v2+json

http://localhost:8080/v1/person
http://localhost:8080/v2/person
http://localhost:8080/person?version=1
http://localhost:8080/person?version=2

Versioning REST API - Factors -

e Factors to consider URI Versioning - Twitter

= http://localhost:8080/v1/person

M = http://localhost:8080/v2/person
[|
U R I PO l l u tl on Request Parameter versioning - Amazon
= http://localhost:8080/person?version=1
[| M I S u S e Of H TT P H e a d e rS = http://localhost:8080/person?version=2

(Custom) headers versioning - Microsoft
= SAME-URL headers=[X-API-VERSION=1]

u C a C h I n g = SAME-URL headers=[X-API-VERSION=2]

Media type versioning - GitHub
= SAME-URL produces=application/vnd.company.app-v1+json

u Can We exeCUte the requeSt On the browser? = SAME-URL produces=application/vnd.company.app-v2+json
= API Documentation
= Summary: No Perfect Solution

e My Recommendations
= Think about versioning even before you need it!
= One Enterprise - One Versioning Approach

HATEOAS

Hypermedia as the Engine of Application State
(HATEOAS)

Websites allow you to:
= See Data AND Perform Actions (using links)

How about enhancing your REST API to tell consumers

how to perform subsequent actions?
= HATEOAS

Implementation Options:

= 1: Custom Format and Implementation
o Difficult to maintain

= 2: Use Standard Implementation
o HAL (JSON Hypertext Application Language): Simple format that gives
consistent and easy way to hyperlink between resources in your API

Q

o Spring HATEOAS: Generate HAL responses with hyperlinks to resources

}

"name": "Adam",
"birthDate": "2022-08-16",
"_links": {
"all-users": {
"href": "http://localhost:808@/users"
}
}

28

Minutes

Customizing REST API Responses - Filtering and more..

Serialization: Convert object to stream (example: JSON)
= Most popular JSON Serialization in Java: Jackson

How about customizing the REST API response returned by
Jackson framework?

1: Customize field names in response
= @JSONProperty

2: Return only selected fields
= Filtering
= Example: Filter out Passwords

= Two types:
o Static Filtering: Same filtering for a bean across different REST API
o @JsonlgnoreProperties, @Jsonlgnore

o Dynamic Filtering: Customize filtering for a bean for specific REST API
o @JsonFilter with FilterProvider

{

"field2": "value2",
"field3": "value3"

3
{

"field2": "value5",
"field3": "value6"

}
]

@ localhost:8080/filtering

{

"fieldl": "valuel",
"field3": "value3"

}

28

Minutes

Get Production-ready with Spring Boot Actuator

e Spring Boot Actuator: Provides Spring Boot’s
production-ready features
= Monitor and manage your application in your production
e Spring Boot Starter Actuator: Starter to add Spring Boot
Actuator to your application
= spring-boot-starter-actuator
e Provides a number of endpoints:
= beans - Complete list of Spring beans in your app
= health - Application health information
= metrics - Application metrics
= mappings - Details around Request Mappings
= and alot more

28

Minutes

’ Explore REST API using HAL Explorer
e 1: HAL (JSON Hypertext Application Language)

= Simple format that gives a consistent and easy way to
hyperlink between resources in your API

e 2: HAL Explorer
= An APl explorer for RESTful Hypermedia APIs using HAL

= Enable your non-technical teams to play with APIs

e 3:Spring Boot HAL Explorer
» Auto-configures HAL Explorer for Spring Boot Projects
= spring-data-rest-hal-explorer

Min

Maven

’ What is Maven?

e Things you do when writing code each day:
= Create new projects

= Manages dependencies and their versions
o Spring, Spring MVC, Hibernate,...
o Add/modify dependencies

= Build a JARfile

= Run your application locally in Tomcat or Jetty or ..
= Run unit tests

= Deploy to a test environment

= and a lot more..

e Maven helps you do all these and more...

&) spring
Maven

28

Minutes

Exploring Project Object Model - pom.xml 28

e Let's explore Project Object Model - pom.xml

= 1: Maven dependencies: Frameworks & libraries used in a project
o Ex:spring—-boot-starter—-weband spring-boot-starter-test

Maven

o Why are there so many dependencies in the classpath?
o Answer: Transitive Dependencies

o (REMEMBER) Spring dependencies are DIFFERENT

= 2: Parent Pom: spring-boot-starter-parent
o Dependency Management: spring—boot—-dependencies

o Properties: java.version, plugins and configurations

= 3: Name of our project: groupld + artifactld
o l:groupld: Similar to package name
o 2:artifactld: Similar to class name
o Why isitimportant?
o Think about this: How can other projects use our new project?
e Activity: help:effective-pom, dependency:tree & Eclipse Ul

= |et's add a new dependency: spring-boot-starter-web

Exploring Maven Build Life Cycle wid
o When. we run a maven command, maven build life
cycle is used
Compile
e Build LifeCycle is a sequence of steps

= Validate

= Compile

m Test

= Package

= |ntegration Test

= |nstall
epioy

= Deploy

28

How does Maven Work?
e Maven follows Convention over Configuration

= Pre defined folder structure

= Almost all Java projects follow Maven structure (Consistency)
e Maven central repository contains jars (and others) indexed | Centra

by artifact id and group id Repository

= Stores all the versions of dependencies Local

= repositories > repository Repository

= pluginRepositories > pluginRepository
e When a dependency is added to pom.xml, Maven tries to

download the dependency
= Downloaded dependencies are stored inside your maven local repository

= Local Repository : a temp folder on your machine where maven stores the
jar and dependency files that are downloaded from Maven Repository.

Important Maven Commands

mvn --version
mvn compile: Compile source files

mvn test-compile: Compile test files
= OBSERVCE CAREFULLY: This will also compile source files

mvn clean: Delete target directory
mvn test: Run unit tests

mvn package: Create a jar

mvn help:effective-pom

mvn dependency:tree

«28

Minutes

28

Spring Boot Maven Plugin
e Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven
= Example: Create executable jar package
= Example: Run Spring Boot application
= Example: Create a Container Image
e Commands:
s ot
= mvn spring-boot:run (Run application)
= mvn spring-boot:start (Non-blocking - Ex:integration tests)

= mvn spring-boot:stop (Stop application)
= mvn spring-boot:build-image (Build a container image)

How are Spring Releases Versioned?

e Version scheme - MAJOR.MINOR.PATCH[-MODIFIER]
= MAJOR: Significant amount of work to upgrade (10.0.0 to 11.0.0)

= MINOR: Little to no work to upgrade (10.1.0 to 10.2.0)
= PATCH: No work to upgrade (10.5.4 to 10.5.5)

= MODIFIER: Optional modifier
o Milestones - M1, M2, .. (10.3.0-M1,10.3.0-M2)

o Release candidates - RC1, RC2, .. (10.3.0-RC1, 10.3.0-RC2)
o Snapshots - SNAPSHOT
o Release - Modifier will be ABSENT (10.0.0, 10.1.0)

e Example versions in order:
= 10.0.0-SNAPSHOT, 10.0.0-M1, 10.0.0-M2, 10.0.0-RC1, 10.0.0-RC2, 10.0.0, ...

e MY RECOMMENDATIONS:
= Avoid SNAPSHOTSs

m Use ONLY Released versions in PRODUCTION

Maven
&) spring

28

Minutes

Minutes

Gradle

Gradle 28

e Goal: Build, automate and deliver better software, faster
MGradle

= Build Anything: Cross-Platform Tool
o Java, C/C++, JavaScript, Python, ...

= Automate Everything: Completely Programmable
o Complete flexibility

o UsesaDSL
o Supports Groovy and Kotlin

= Deliver Faster: Blazing-fast builds
o Compile avoidance to advanced caching

o Can speed up Maven builds by up to 90%

o Incrementality — Gradle runs only what is necessary
o Example: Compiles only changed files

o Build Cache — Reuses the build outputs of other Gradle builds with the same inputs

e Same project layout as Maven
e IDE support still evolving

Gradle Plugins 28,

e Top 3 Java Plugins for Gradle:

= 1: Java Plugin: Java compilation + testing + bundling capabilities
o Default Layout

o src/main/java: Production Java source

o src/main/resources: Production resources, such as XML and properties files
o src/test/java: Test Java source

o src/test/resources: Test resources

o Key Task: build

= 2: Dependency Management: Maven-like dependency management
o group:'org.springframework’, name: 'spring-core’,
version: '10.0.3.RELEASE' OR

o Shortcut:org.springframework:spring—-core:10.0.3.RELEASE
= 3: Spring Boot Gradle Plugin: Spring Boot supportin Gradle

o Package executable Spring Boot jar, Container Image (bootJar, bootBuildimage)

o Use dependency management enabled by spring-boot-dependencies

o No need to specify dependency version
o Ex: implementation('org.springframework.boot:spring-boot-starter")

Maven vs Gradle - Which one to Use?

Let's start with a few popular examples:
= Spring Framework - Using Gradle since 2012 (Spring Framework v3.2.0)

= Spring Boot - Using Gradle since 2020 (Spring Boot v2.3.0)

= Spring Cloud - Continues to use Maven even today
o Last update: Spring Cloud has no plans to switch

Top Maven Advantages: Familiar, Simple and Restrictive
Top Gradle Advantages: Faster build times and less verbose

What Do | Recommend: I'm sitting on the fence for now
= Choose whatever tool best meets your projects needs

= |f your builds are taking really long, go with Gradle

= |f your builds are simple, stick with Maven

Maven
RGradle

28

Minutes

Microservices

<

~3

Movie Application

et

v

D
s

Large Database

WHAT IS A MONOLITH?

A large application <\E DEPLOYMENT COMPLEXITY
; > | T

R) ----- Minor updates need complete redeplogment

s | N i TIGHTLY COUPLED COMPONENTS
"; ’J R Changes in one part of can affect others =>
longer release cycles
Challenges
— y _/"' SCALABILITY LIMITATIONS
\ L2 4y f | Scaling can be resource intensive. Entire app to be
< scaled even if only one part of it needs more capacity.
TECHNOLOGY LOCK=-IN
------ > Entire app built on a single technology stack.

¥ ¥ ¥
Adopting new technologies is challenging.

28

Minutes

GETTING STARTED WITH MICROSERVICES |

Small autonomous services that work together

- SAM NEWMAN

In short, the microservice architectural style is an approach to
developing a single application as a Suite of small services, each
running in its own process and communicating with lightweight
mechanisms, often an HT TP resource API. These services are
built around business capabilities and independently deployable by
fully automated deployment machinery. There is a bare minimum
of centralized management of these services, which may be
written in different programming languages and use different
data storage technologies.

- JAMES LEwIS AND MARTIN FOWLER

28

Minutes

MICROSERUICES - KEEPING IT SIMPLE! |

e~ 11/e| REST

B i > = AP] - Built following REST AP
o o= 11 \=0 Standards and Best Practices

MicroserviCE A K

SHALL WELL CHOSEN
THREe CRITICAL

Focus AREAS

DEPLOY&BLE UNITS
MicroserviCE B

Independently deployable units of
small services

Q DYNAMIC ScALING
Microservice C eeeaees v = Possible to scale up and down

independent of each other

28

Minutes

MOUIE BOOKING APPLICATION: KEY MICROSERVICES ’

C D 3 3
> .y =
s p & =
MoVvIESERVICE BoOKINGSERVICE PRICINGSERVICE
Central service managing movie Handles ticket booking, seat Manages ticket pricing, discounts,
details, showtimes, and availability selection, and booking management and special offers
€
;J'-"-P . |
=
CUSTOMERSERVICE REVIEWSERVICE
Manages customer profiles, Allows users to submit and view
authentication, and customer support reviews, ratings, and comments

28

Minutes

MICROSERVICES - 3 KEY ADUANTAGES |

Teams can adopt new technologies and Smaller, independent services can be
processes for individual services developed, tested, and deployed more
Flexibility: Choose best frameworks, \ Hibeidl
and languages for each service J Agility: Allows for more frequent

: ; . updates and quicker response to
Innovation: Easier to experiment

market demands

New TechNoLoGyY & and vse emerging technologies FASTER RELEASE
Process ADOPTION CYCLES

Py Enable scaling of individual

i i components based on deman

- /‘ . ponents based on demand

. : Efficiency: Scale only the services

= wmd that need it, reducing costs

DyNAMIC ScALING

28

Minutes

28

KEY MICROSERVICES SOLUTIONS |

SPrING BooT SerinGg CLoup
Enables rapid development Umbrella project that provides
of REST AP!I essential microservice needs
>
| | KUBERNETES
Docker |
Consistent deployment * Orchestrate thousands of

approach for microservices. microservices with advanced features
Programming language and (Service Discovery, Load Balancing,
environment independent. . - Release Mgmt, ..)

KEY MICROSERVICES SOLUTIONS |

3 CenTRALIZED ConfiGURATION P ? DisTRIBUTED TRACING
e ol Manage configuration for (%) .
. e o it
ol e multiple microservices in B M race Tequests across
central GIT repository d HIERoseeviees
) Loap BALANCING EpGe SErVER
[;_,) Distributes requests across > { I ‘ ‘) Single Entry Point: Implement
K_,) active instances of —_ common features like
microservices dynamically - authentication
bt
FAULT ToLERANCE

Service DiIscovERY

| o) Ensure that failure in one
Enable automatic discovery A microservice does not cascade and
of microservices :

make other microservices to fail

28

Minutes

Microservices - Evolution

e Goal: Evolve with Microservices

= V1
= V2

o

- Spring Boot 2.0.0 to 2.3.x
- Spring Boot 2.4.0t0 3.0.0to ...

Spring Cloud LoadBalancer (Ribbon)
Spring Cloud Gateway (Zuul)
Resilience4j (Hystrix)

NEW: Docker

NEW: Kubernetes

NEW: Observability
o NEW: Micrometer (Spring Cloud Sleuth)

o NEW: OpenTelemetry

DockerEngine

HostOS

CloudInfrastructure

28

Minutes

Microservices - Spring Boot 2 vs Spring Boot 3

e V1(2.0.0 to 2.3.x)
e V2 (2.4.xt03.0.0t0..)
e Spring Boot 2.4.0+

= https://github.com/in28minutes/spring-microservices-v2

e Spring Boot 3.0.0+

= https://github.com/in28minutes/spring-microservices-v3
= Notes: v3-upgrade.md
= Key Changes:

o Observability - Ability of a system to measure its current state based on

the generated data
o Monitoring is reactive while Observability is proactive

o OpenTelemetry: One Standard for Logs + Traces + Metrics

https://github.com/in28minutes/spring-microservices-v2
https://github.com/in28minutes/spring-microservices-v3

Microservices - V2 - What's New 28

e Microservices Evolve Quickly

e V2 (Spring Boot - 2.4.x t0 3.0.0 to LATEST)
= Spring Cloud LoadBalancer instead of Ribbon

= Spring Cloud Gateway instead of Zuul

DockerEngine

= Resilience4j instead of Hystrix

HostOS

CloudInfrastructure

= Docker: Containerize Microservices
o Run microservices using Docker and Docker Compose

= Kubernetes: Orchestrate all your Microservices with
Kubernetes

= OpenTelemetry: One Standard - Logs, Traces & Metrics

= Micrometer (Replaces Spring Cloud Sleuth)

. . 28
Ports Standardization

Application Port

Limits Microservice 8080, 8081, ...

Spring Cloud Config Server 8888

Currency Exchange Microservice 8000, 8001, 8002, ..

Currency Conversion Microservice 8100, 8101, 8102, ...

Netflix Eureka Naming Server 8761
API Gateway 8765
Zipkin Distributed Tracing Server 9411

28

Need for Centralized Configuration Minates
e Lot of configuration:
= External Services - - -
= Database smce smce smace
= Queue - - -
= | L= =l

= Typical Application Configuration
* Configuration variations: o i e

= 1000s of Microservices

= Multiple Environments

= Multiple instances in each Environment

e How do you manage all this
configuration?

Config Server

28

Minutes

28

Minutes

Environments

i i

Environments

28

Minutes

o

Environments

28

Minutes

28

Minutes

Microservices Overview

Currency Exchange Microservice 28

What is the exchange rate of one currency in another?

http://localhost:8000/currency—-exchange/from/USD/to/INR

{
""id":10001,
"from":"USD",
Iltoll : IIINRII ,
"conversionMultiple":65.00,
"environment":"8000 instance-id"
}

Currency Conversion Microservice wid

Convert 10 USD into INR

http://localhost:8100/currency—-conversion/from/USD/to/INR/quantity/10

{
"id": 10001,
"from": "USD",
Iltoll: IIINRII’

"conversionMultiple": 65.00,
"quantity": 10,
"totalCalculatedAmount": 650.00,
"environment": "8000 instance-id"

Naming Server

28

Minutes

Load Balancing

28

Minutes

Spring Cloud Gateway

Simple, yet effective way to route to APIs

Provide cross cutting concerns:
= Security

= Monitoring/metrics

Built on top of Spring WebFlux (Reactive
Approach)

Features:
= Match routes on any request attribute

= Define Predicates and Filters

= |ntegrates with Spring Cloud Discovery Client (Load
Balancing)

= Path Rewriting

Gateway Client

e —

Gateway Handler
Mapping
]

Gateway Web
Handler

i

From https://docs.spring.io

28

Minutes

https://docs.spring.io/

Circuit Breaker 28

e What if one of the services is down oris slow?
= |mpacts entire chain!

e Questions:
= Can we return a fallback response if a service is down?
= Can we implement a Circuit Breaker pattern to reduce load?
= Can we retry requests in case of temporary failures?

= Can we implement rate limiting?

e Solution: Circuit Breaker Framework - Resilience4j

Distributed Tracing s

e Complex call chain

e How do you debug problems?
e How do you trace requests across microservices?
e Enter Distributed Tracing

Distributed Tracing

28

Minutes

Microservices 28

-

e Enterprises are heading towards microservices architectures
» Build small focused microservices

= Flexibility to innovate and build applications in different programming languages (Go, Java,
Python, JavaScript, etc)

= BUT deployments become complex!
= How can we have one way of deploying Go, Java, Python or JavaScript .. microservices?

o Fnter containers!

Minutes

Docker
Getting Started

’ How does Traditional Deployment work?

e Deployment process described in a document

e Operations team follows steps to:
= Setup Hardware

= Setup OS (Linux, Windows, Mag, ...)
= |nstall Software (Java, Python, NodeJs, ...)
= Setup Application Dependencies
= |nstall Application
e Manual approach:
= Takes a lot of time
= High chance of making mistakes

Applications

Software

Hardware

ll
(&g

28

Minutes

100

! Understanding Deployment Process with Docker

Simplified Deployment Process:
= OS doesn't matter

= Programming Language does not matter

m Hardware does not matter

01: Developer creates a Docker Image
02: Operations run the Docker Image

= Using a very simple command
Takeaway: Once you have a Docker Image, irrespective
of what the docker image contains, you run it the same
way!

= Make your operations team happy

Software

Applications

Hardware

ll
(&> gp)

28

Minutes

101

How does Docker Make it Easy?

e Docker image has everything you need to run your
application:
= Operating System
= Application Runtime (JDK or Python or NodelJS)
= Application code and dependencies

e You can run a Docker container the same way
everywhere:
= Your local machine
= Corporate data center
= Cloud

Applications

Software

Hardware

ll
(&g

28

Minutes

102

Run Docker Containers Anywhere

DockerEngine

HostOS

CloudInfrastructure

e All thatyou need is a Docker Runtime (like Docker Engine)

28

Minutes

103

’ Why is Docker Popular?

28

Minutes

104

What's happening in the Background? 28

docker container run -d -p 5000:5000 in28min/hello-world-nodejs:0.0.1.RELEASE

e Dockerimage is downloaded from Docker Registry (Default: Docker Hub)
= https://hub.docker.com/r/in28min/hello-world-nodejs

= Image is a set of bytes

= Container: Running Image

= in28min/hello-world-nodejs: Repository Name
= 0.0.1.RELEASE: Tag (or version)

= -p hostPort:containerPort: Maps internal docker port (container port) to a port on the host
(host port)

o By default, Docker uses its own internal network called bridge network

o We are mapping a host port so that users can access your application

= -d: Detatched Mode (Don't tie up the terminal)

https://hub.docker.com/r/in28min/hello-world-nodejs

Understanding Docker Terminology

Docker Image: A package representing specific

version of your application (or software)

= Contains everything your app needs
o 0S, software, code, dependencies

Docker Registry: A place to store your docker images
Docker Hub: A registry to host Docker images

Docker Repository: Docker images for a specific app
(tags are used to differentiate different images)

Docker Container: Runtime instance of a docker
Image
Dockerfile: File with instructions to create a Docker
Image

Reqistry

(Repository (microservice1)\

o Image1

o |magex?
\ y

(Repository (microservice?) |

o Imagex20
o Image21

. J

28

Minutes

106

Dockerfile - 1 - Creating Docker Images

FROM openjdk:18.0-slim

COPY target/*.jar app.jar

EXPOSE 5000

ENTRYPOINT ["java","-jar","/app.jar"]

e Dockerfile contains instruction to create Docker images
= FROM - Sets a base image

= COPY - Copies new files or directories into image
= EXPOSE - Informs Docker about the port that the container listens on at runtime
= ENTRYPOINT - Configure a command that will be run at container launch

o docker build -t in28min/hello-world:v1 .

28

Minutes

107

Dockerfile - 2 - Build Jar File - Multi Stage i

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app

COPY . /home/app

RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000

COPY ——from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java —jar /app.jar"]

e Let build thejarfile as part of creation of Docker Image
e Your build does NOT make use of anything built on your local machine

Dockerfile - 3 - Improve Layer Caching i

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app

COPY ./pom.xml /home/app/pom.xml
COPY ./src/main/java/com/example/demodocker/DemoDockerApplication.java /
/home/app/src/main/java/com/example/demodocker/DemoDockerApplication. java

RUN mvn —-f /home/app/pom.xml clean package

COPY . /home/app
RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000

COPY ——from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java —-jar /app.jar"]

e Docker caches every layer and tries to reuse it
e |Let's make use of this feature to make our build efficient

28

Spring Boot Maven Plugin - Create Docker Image
e Spring Boot Maven Plugin: Provides Spring Boot

support in Apache Maven

= Example: Create executable jar package

= Example: Run Spring Boot application

= Example: Create a Container Image

= Commands:

o mvn spring-boot:repackage (create jar or war)
o Run package using java —jar

Integration Test

o mvn spring-boot:run (Run application) el
nsta

o mvn spring-boot:start (Non-blocking. Use it to run integration tests.)

o mvn spring-boot:stop (Stop application started with start command) Deploy

o mvn spring-boot:build-image (Build a container image)

110

Creating Docker Images - Dockerfile

FROM node:8.16.1-alpine
WORKDIR /app

COPY . /app

RUN npm install

EXPOSE 5000

CMD node index.js

e Dockerfile contains instruction to create Docker images
= FROM - Sets a base image

WORKDIR - sets the working directory

RUN - execute a command

EXPOSE - Informs Docker about the port that the container listens on at runtime

COPY - Copies new files or directories into image

CMD - Default command for an executing container

28

Minutes

111

Container Orchestration

e Requirement : | want 10 instances of
Microservice A container, 15 instances
of Microservice B container and

e Typical Features:

Auto Scaling - Scale containers based on
demand

Service Discovery - Help microservices find
one another

Load Balancer - Distribute load among
multiple instances of a microservice

Self Healing - Do health checks and replace
failing instances

Zero Downtime Deployments - Release new
versions without downtime

Container Orchestrator

28

Minutes

112

Container Orchestration Options 28

Minutes
e AWS Specific
= AWS Elastic Container Service (ECS)
= AWS Fargate : Serverless version of AWS ECS
Container Orchestrator
e Cloud Neutral - Kubernetes R
= AWS - Elastic Kubernetes Service (EKS)
= Azure - Azure Kubernetes Service (AKS)
= GCP - Google Kubernetes Engine (GKE)

= EKS/AKS does not have a free tier!
o We use GCP and GKE!

113

Kubernetes

Kubernetes

e Most popular open source container
orchestration solution

e Provides Cluster Management
(including upgrades)

= Each cluster can have different types of
virtual machines
e Provides all important container

orchestration features:
= Auto Scaling

Service Discovery

Load Balancer

Self Healing

Zero Downtime Deployments

Container Orchestrator

28

Minutes

115

Google Kubernetes Engine (GKE)

Managed Kubernetes service

Minimize operations with auto-repair (repair failed nodes) and
auto-upgrade (use latest version of K8S always) features

Provides Pod and Cluster Autoscaling

Enable Cloud Logging and Cloud Monitoring with simple
configuration

Uses Container-Optimized OS, a hardened OS built by Google
Provides support for Persistent disks and Local SSD

28

Minutes

Al

Kubernetes Engine

116

Kubernetes - A Microservice Journey - Getting Started

Let's Have Some Fun: Let's get on a journey with Kubernetes:
= |et's create a cluster, deploy a microservice and play with it in 13 steps! AR

1: Create a Kubernetes cluster with the default node pool Kuberetes Engne

= gcloud container clusters create or use cloud console

2: Login to Cloud Shell

3: Connect to the Kubernetes Cluster
= gcloud container clusters get-credentials my-cluster --zone us-centrall-a --project
solid-course-258105

Minutes

117

Kubernetes - A Microservice Journey - Deploy Microservice 28

e 4: Deploy Microservice to Kubernetes:

= Create deployment & service using kubectl commands Al
o kubectl create deployment hello-world-rest-api --image=in28min/hello-world-rest-api:0.0.1.RELEASE

Kubernetes Engine

o kubectl expose deployment hello-world-rest-api --type=LoadBalancer --port=8080

e 5:Increase number of instances of your microservice:
= kubectl scale deployment hello-world-rest-api --replicas=2

e 6:Increase number of nodes in your Kubernetes cluster:
= gcloud container clusters resize my-cluster --node-pool my-node-pool --num-nodes 5

= You are NOT happy about manually increasing number of instances and nodes!

118

Kubernetes - A Microservice Journey - Auto Scaling and ..

7: Setup auto scaling for your microservice:

= kubectl autoscale deployment hello-world-rest-api --max=10 --cpu-percent=70 AR
o Also called horizontal pod autoscaling - HPA - kubectl get hpa

Kubernetes Engine

8: Setup auto scaling for your Kubernetes Cluster

= gcloud container clusters update cluster-name --enable-autoscaling --min-nodes=1 --
max-nodes=10

9: Add some application configuration for your microservice

= Config Map - kubectl create configmap todo-web-application-config --from-
literal=RDS_DB_NAME=todos

10: Add password configuration for your microservice
= Kubernetes Secrets - kubectl create secret generic todo-web-application-secrets-1 --
from-literal=RDS_PASSWORD=dummytodos

28

Minutes

119

Kubernetes Deployment YAML - Deployment 28

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: hello-world-rest-api
name: hello-world-rest-api
namespace: default
spec:
replicas: 3
selector:
matchLabels:
app: hello-world-rest-api
template:
metadata:
labels:
app: hello—-world-rest-api
spec:
containers:
— image: in28min/hello-world-rest—-api:0.0.3.RELEASE
name: hello-world-rest—-api

120

Kubernetes Deployment YAML - Service 28

Minutes

apiVersion: vl
kind: Service
metadata:
labels:
app: hello-world-rest-api
name: hello-world-rest-api
namespace: default
spec:
ports:
- port: 8080
protocol: TCP
targetPort: 8080
selector:
app: hello-world-rest-api
sessionAffinity: None
type: LoadBalancer

121

Kubernetes - A Microservice Journey - The End!

e 11: Deploy a new microservice which needs nodes with a GPU

attached

= Attach a new node pool with GPU instances to your cluster
o gcloud container node-pools create POOL_NAME --cluster CLUSTER_NAME

o gcloud container node-pools list --cluster CLUSTER_NAME

= Deploy the new microservice to the new pool by setting up nodeSelector in the

deployment.yaml
o nodeSelector: cloud.google.com/gke-nodepool: POOL_NAME

e 12: Delete the Microservices

= Delete service - kubectl delete service

= Delete deployment - kubectl delete deployment
e 13: Delete the Cluster

= gcloud container clusters delete

Al

Kubernetes Engine

28

Minutes

122

Google Kubernetes Engine (GKE) Cluster 28

Minutes

e Cluster: Group of Compute Engine instances:
= Master Node(s) - Manages the cluster

= Worker Node(s) - Run your workloads (pods)

e Master Node (Control plane) components:

m APl Server - Handles all communication for a K8S
cluster (from nodes and outside)

= Scheduler - Decides placement of pods

= Control Manager - Manages deployments &
replicasets

= etcd - Distributed database storing the cluster state

e Worker Node components:
= Runs your pods

= Kubelet - Manages communication with master
node(<)

123

Kubernetes - Pods

Smallest deployable unit in Kubernetes
e A Pod contains one or more containers
e Each Pod is assigned an ephemeral IP address

All containers in a pod share:
= Network

Storage
IP Address

Ports and

Volumes (Shared persistent disks)

e POD statuses : Running /Pending /Succeeded
[Failed /Unknown

28

Minutes

124

Kubernetes - Deployment vs Replica Set 28
e Adeploymentis created for each microservice: —
= kubectl create deployment ml —-—image=ml:v1l VAR
= Deployment represents a microservice (with all its releases) ‘/WRT“S“ VZRTW\
= Deployment manages new releases ensuring zero downtime "T’" “I"“ "T“ ”I"d

V1 Container V1 Container 'V2 Container V2 Container

e Replica set ensures that a specific number of pods are
running for a specific microservice version
= kubectl scale deployment m2 ——replicas=2
= Even if one of the pods is killed, replica set will launch a new one

e Deploy V2 of microservice - Creates a new replica set
= kubectl set image deployment ml ml=ml:v?2

= V2 Replica Set is created
= Deployment updates V1 Replica Set and V2 Replica Set based on

the release strategies

Kubernetes - Service 28

Minutes

e Each Pod has its own IP address:

= How do you ensure that external users are not impacted when:
o Apod fails and is replaced by replica set

o Anew release happens and all existing pods of old release are replaced by ones of new release

e Create Service

= kubectl expose deployment name --type=LoadBalancer --port=80
o Expose PODs to outside world using a stable IP Address

o Ensures that the external world does not get impacted as pods go down and come up

e Three Types:

= ClusterlP: Exposes Service on a cluster-internal IP
o Use case: You want your microservice only to be available inside the cluster (Intra cluster communication)

= LoadBalancer: Exposes Service externally using a cloud provider's load balancer
o Use case: You want to create individual Load Balancer's for each microservice

= NodePort: Exposes Service on each Node's IP at a static port (the NodePort)
o Use case: You DO not want to create an external Load Balancer for each microservice (You can create one Ingress

BRI R D U R (L (R}

Kubernetes - Liveness and Readiness Probes 28

e Kubernetes uses probes to check the health of a microservice:
= |f readiness probe is not successful, no traffic is sent

= |f liveness probe is not successful, pod is restarted

e Spring Boot Actuator (>=2.3) provides inbuilt readiness and liveness probes:
= /health/readiness

= /health/liveness

127

Minutes

What Next?

FASTEST ROADMAPS

Google Cloud
Certifications

A

Azure
Certifications

é{_) Java

—

Java Full Stack

dWS

\-—;’7

AWS
Certifications

©

Java Microservices

in28minutes.com

5

28

Minutes

129

