
1

2

3

4

5

6

7

8

9

Web Services

10

11

12

13

14

15

16

17

Spring Boot
in 10(ish) Steps

18

WHY Spring Boot?
You can build web apps & REST API WITHOUT Spring
Boot
What is the need for Spring Boot?

WHAT are the goals of Spring Boot?
HOW does Spring Boot work?
COMPARE Spring Boot vs Spring MVC vs
Spring

Getting Started with Spring Boot

19

1: Understand the world before Spring Boot (10000 Feet)
2: Create a Spring Boot Project
3: Build a simple REST API using Spring Boot
4: Understand the MAGIC of Spring Boot

Spring Initializr
Starter Projects
Auto Configuration
Developer Tools
Actuator
...

Getting Started with Spring Boot - Approach

20

Setting up Spring Projects before Spring
Boot was NOT easy!
We needed to configure a lot of things
before we have a production-ready
application

World Before Spring Boot!

21

World Before Spring Boot - 1 - Dependency Management

Manage frameworks and versions
REST API - Spring framework, Spring MVC framework, JSON binding framework, ..

Unit Tests - Spring Test, Mockito, JUnit, ...

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>6.2.2.RELEASE</version>
</dependency>
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.13.3</version>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

22

World Before Spring Boot - 2 - web.xml

Example: Configure DispatcherServlet for Spring MVC

<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/todo-servlet.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

23

World Before Spring Boot - 3 - Spring Configuration

Define your Spring Configuration
Component Scan

View Resolver
....

<context:component-scan base-package="com.in28minutes" />

<bean
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/views/</value>
 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
</bean>

24

World Before Spring Boot - 4 - NFRs

Logging
Error Handling
Monitoring

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <path>/</path>
 <contextReloadable>true</contextReloadable>
 </configuration>
</plugin>

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

25

Setting up Spring Projects before Spring
Boot was NOT easy!

1: Dependency Management (pom.xml)
2: Define Web App Configuration (web.xml)
3: Manage Spring Beans (context.xml)
4: Implement Non Functional Requirements (NFRs)

AND repeat this for every new project!
Typically takes a few days to setup for each
project (and countless hours to maintain)

World Before Spring Boot!

26

Understanding Power of Spring Boot

1: Create a Spring Boot Project
2: Build a simple REST API using Spring Boot

// http://localhost:8080/courses
[
 {
 "id": 1,
 "name": "Learn AWS",
 "author": "in28minutes"
 }
]

27

Help you build PRODUCTION-READY apps QUICKLY
Build QUICKLY

Spring Initializr
Spring Boot Starter Projects
Spring Boot Auto Configuration
Spring Boot DevTools

Be PRODUCTION-READY
Logging
Different Configuration for Different Environments

Profiles, ConfigurationProperties

Monitoring (Spring Boot Actuator)
...

What's the Most Important Goal of Spring Boot?

28

Spring Boot
BUILD QUICKLY

29

I need a lot of frameworks to build application features:
Build a REST API: I need Spring, Spring MVC, Tomcat, JSON conversion...
Write Unit Tests: I need Spring Test, JUnit, Mockito, ...

How can I group them and make it easy to build applications?
Starters: Convenient dependency descriptors for diff. features

Spring Boot provides variety of starter projects:
Web Application & REST API - Spring Boot Starter Web (spring-webmvc,
spring-web, spring-boot-starter-tomcat, spring-boot-starter-json)
Unit Tests - Spring Boot Starter Test
Talk to database using JPA - Spring Boot Starter Data JPA
Talk to database using JDBC - Spring Boot Starter JDBC
Secure your web application or REST API - Spring Boot Starter Security

Exploring Spring Boot Starter Projects

30

I need lot of configuration to build Spring app:
Component Scan, DispatcherServlet, Data Sources, JSON Conversion, ...

How can I simplify this?
Auto Configuration: Automated configuration for your app

Decided based on:
Which frameworks are in the Class Path?

What is the existing configuration (Annotations etc)?

Example: Spring Boot Starter Web
Dispatcher Servlet (DispatcherServletAutoConfiguration)

Embedded Servlet Container - Tomcat is the default
(EmbeddedWebServerFactoryCustomizerAutoConfiguration)

Default Error Pages (ErrorMvcAutoConfiguration)
Bean<->JSON
(JacksonHttpMessageConvertersConfiguration)

Exploring Spring Boot Auto Configuration

31

Questions:
Who is launching the Spring Context?
Who is triggering the component scan?

Who is enabling auto configuration?

Answer: @SpringBootApplication
1: @SpringBootConfiguration: Indicates that a class provides Spring Boot
application @Configuration.

2: @EnableAutoConfiguration: Enable auto-configuration of the Spring
Application Context,

3: @ComponentScan: Enable component scan (for current package, by
default)

Understanding the Glue - @SpringBootApplication

32

Increase developer productivity
Why do you need to restart the server
manually for every code change?
Remember: For pom.xml dependency
changes, you will need to restart server
manually

Build Faster with Spring Boot DevTools

33

Spring Boot
PRODUCTION-READY

34

Applications have different environments: Dev, QA,
Stage, Prod, ...
Different environments need different configuration:

Different Databases
Different Web Services

How can you provide different configuration for
different environments?

Profiles: Environment specific configuration

How can you define externalized configuration for
your application?

ConfigurationProperites: Define externalized configuration

Managing App. Configuration using Profiles

35

How do you deploy your application?
Step 1 : Install Java
Step 2 : Install Web/Application Server

Tomcat/WebSphere/WebLogic etc

Step 3 : Deploy the application WAR (Web ARchive)
This is the OLD WAR Approach

Complex to setup!

Embedded Server - Simpler alternative
Step 1 : Install Java
Step 2 : Run JAR file

Make JAR not WAR (Credit: Josh Long!)
Embedded Server Examples:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-undertow

Simplify Deployment with Spring Boot Embedded Servers

36

Monitor and manage your application in your
production
Provides a number of endpoints:

beans - Complete list of Spring beans in your app
health - Application health information
metrics - Application metrics
mappings - Details around Request Mappings

Monitor Applications using Spring Boot Actuator

37

Understanding Spring Boot vs Spring MVC vs Spring
Spring Boot vs Spring MVC vs Spring: What's in it?

Spring Framework: Dependency Injection
@Component, @Autowired, Component Scan etc..

Just Dependency Injection is NOT sufficient (You need other frameworks to build apps)
Spring Modules and Spring Projects: Extend Spring Eco System

Provide good integration with other frameworks (Hibernate/JPA, JUnit & Mockito for Unit Testing)

Spring MVC (Spring Module): Simplify building web apps and REST API
Building web applications with Struts was very complex

@Controller, @RestController, @RequestMapping("/courses")

Spring Boot (Spring Project): Build PRODUCTION-READY apps QUICKLY
Starter Projects - Make it easy to build variety of applications

Auto configuration - Eliminate configuration to setup Spring, Spring MVC and other frameworks!

Enable non functional requirements (NFRs):
Actuator: Enables Advanced Monitoring of applications

Embedded Server: No need for separate application servers!

Logging and Error Handling

Profiles and ConfigurationProperties

38

Goal: 10,000 Feet overview of Spring Boot
Help you understand the terminology!

Starter Projects

Auto Configuration

Actuator

DevTools

Advantages: Get started quickly with production ready
features!

Spring Boot - Review

39

Building REST API
with Spring Boot

40

WHY Spring Boot?
You can build REST API WITHOUT Spring Boot
What is the need for Spring Boot?

HOW to build a great REST API?
Identifying Resources (/users, /users/{id}/posts)
Identifying Actions (GET, POST, PUT, DELETE, ...)
Defining Request and Response structures
Using appropriate Response Status (200, 404, 500, ..)
Understanding REST API Best Practices

Thinking from the perspective of your consumer
Validation, Internationalization - i18n, Exception Handling, HATEOAS,
Versioning, Documentation, Content Negotiation and a lot more!

Building REST API with Spring Boot - Goals

41

1: Build 3 Simple Hello World REST API
Understand the magic of Spring Boot
Understand fundamentals of building REST API with Spring Boot

@RestController, @RequestMapping, @PathVariable, JSON conversion

2: Build a REST API for a Social Media Application
Design and Build a Great REST API

Choosing the right URI for resources (/users, /users/{id}, /users/{id}/posts)

Choosing the right request method for actions (GET, POST, PUT, DELETE, ..)

Designing Request and Response structures

Implementing Security, Validation and Exception Handling

Build Advanced REST API Features
Internationalization, HATEOAS, Versioning, Documentation, Content Negotiation, ...

3: Connect your REST API to a Database
Fundamentals of JPA and Hibernate
Use H2 and MySQL as databases

Building REST API with Spring Boot - Approach

42

Let's explore some Spring Boot Magic: Enable Debug Logging
WARNING: Log change frequently!

1: How are our requests handled?
DispatcherServlet - Front Controller Pattern

Mapping servlets: dispatcherServlet urls=[/]
Auto Configuration (DispatcherServletAutoConfiguration)

2: How does HelloWorldBean object get converted to JSON?
@ResponseBody + JacksonHttpMessageConverters

Auto Configuration (JacksonHttpMessageConvertersConfiguration)

3: Who is configuring error mapping?
Auto Configuration (ErrorMvcAutoConfiguration)

4: How are all jars available(Spring, Spring MVC, Jackson, Tomcat)?
Starter Projects - Spring Boot Starter Web (spring-webmvc, spring-web, spring-
boot-starter-tomcat, spring-boot-starter-json)

What's Happening in the Background?

43

Build a REST API for a
Social Media Application
Key Resources:

Users
Posts

Key Details:
User: id, name, birthDate
Post: id, description

Social Media Application REST API

44

GET - Retrieve details of a resource
POST - Create a new resource
PUT - Update an existing resource
PATCH - Update part of a resource
DELETE - Delete a resource

Request Methods for REST API

45

Users REST API
Retrieve all Users

GET /users

Create a User
POST /users

Retrieve one User
GET /users/{id} -> /users/1

Delete a User
DELETE /users/{id} -> /users/1

Posts REST API
Retrieve all posts for a User

GET /users/{id}/posts

Create a post for a User
POST /users/{id}/posts

Retrieve details of a post
GET /users/{id}/posts/{post_id}

Social Media Application - Resources & Methods

46

Return the correct response status
Resource is not found => 404
Server exception => 500
Validation error => 400

Important Response Statuses
200 — Success
201 — Created
204 — No Content
401 — Unauthorized (when authorization fails)
400 — Bad Request (such as validation error)
404 — Resource Not Found
500 — Server Error

Response Status for REST API

47

Documentation
Content Negotiation
Internationalization - i18n
Versioning
HATEOAS
Static Filtering
Dynamic Filtering
Monitoring
....

Advanced REST API Features

48

Your REST API consumers need to understand your
REST API:

Resources
Actions

Request/Response Structure (Constraints/Validations)

Challenges:
Accuracy: How do you ensure that your documentation is upto
date and correct?

Consistency: You might have 100s of REST API in an enterprise.
How do you ensure consistency?

Options:
1: Manually Maintain Documentation

Additional effort to keep it in sync with code

2: Generate from code

REST API Documentation

49

Quick overview:
2011: Swagger Specification and
Swagger Tools were introduced

2016: Open API Specification
created based on Swagger Spec.

Swagger Tools (ex:Swagger UI)
continue to exist

OpenAPI Specification: Standard,
language-agnostic interface

Discover and understand REST API

Earlier called Swagger Specification

Swagger UI: Visualize and interact
with your REST API

Can be generated from your OpenAPI
Specification

REST API Documentation - Swagger and Open API

50

Same Resource - Same URI
HOWEVER Different Representations are possible

Example: Different Content Type - XML or JSON or ..
Example: Different Language - English or Dutch or ..

How can a consumer tell the REST API provider
what they want?

Content Negotiation

Example: Accept header (MIME types -
application/xml, application/json, ..)
Example: Accept-Language header (en, nl, fr, ..)

Content Negotiation

51

Your REST API might have consumers from
around the world
How do you customize it to users around the
world?

Internationalization - i18n

Typically HTTP Request Header - Accept-
Language is used

Accept-Language - indicates natural language and
locale that the consumer prefers
Example: en - English (Good Morning)
Example: nl - Dutch (Goedemorgen)

Example: fr - French (Bonjour)

Internationalization - i18n

52

You have built an amazing REST API
You have 100s of consumers
You need to implement a breaking change

Example: Split name into firstName and lastName

SOLUTION: Versioning REST API
Variety of options

URL
Request Parameter
Header
Media Type

No Clear Winner!

Versioning REST API

53

URI Versioning - Twitter

Request Parameter versioning - Amazon

(Custom) headers versioning - Microsoft
SAME-URL headers=[X-API-VERSION=1]

SAME-URL headers=[X-API-VERSION=2]

Media type versioning (a.k.a “content negotiation” or “accept
header”) - GitHub

SAME-URL produces=application/vnd.company.app-v1+json
SAME-URL produces=application/vnd.company.app-v2+json

Versioning REST API - Options

http://localhost:8080/v1/person

http://localhost:8080/v2/person

http://localhost:8080/person?version=1

http://localhost:8080/person?version=2

54

http://localhost:8080/v1/person
http://localhost:8080/v2/person
http://localhost:8080/person?version=1
http://localhost:8080/person?version=2

Factors to consider
URI Pollution
Misuse of HTTP Headers
Caching
Can we execute the request on the browser?
API Documentation
Summary: No Perfect Solution

My Recommendations
Think about versioning even before you need it!
One Enterprise - One Versioning Approach

Versioning REST API - Factors

55

Hypermedia as the Engine of Application State
(HATEOAS)
Websites allow you to:

See Data AND Perform Actions (using links)

How about enhancing your REST API to tell consumers
how to perform subsequent actions?

HATEOAS

Implementation Options:
1: Custom Format and Implementation

Difficult to maintain

2: Use Standard Implementation
HAL (JSON Hypertext Application Language): Simple format that gives a
consistent and easy way to hyperlink between resources in your API

Spring HATEOAS: Generate HAL responses with hyperlinks to resources

HATEOAS

56

Serialization: Convert object to stream (example: JSON)
Most popular JSON Serialization in Java: Jackson

How about customizing the REST API response returned by
Jackson framework?
1: Customize field names in response

@JSONProperty

2: Return only selected fields
Filtering
Example: Filter out Passwords

Two types:
Static Filtering: Same filtering for a bean across different REST API

@JsonIgnoreProperties, @JsonIgnore

Dynamic Filtering: Customize filtering for a bean for specific REST API
@JsonFilter with FilterProvider

Customizing REST API Responses - Filtering and more..

57

Spring Boot Actuator: Provides Spring Boot’s
production-ready features

Monitor and manage your application in your production

Spring Boot Starter Actuator: Starter to add Spring Boot
Actuator to your application

spring-boot-starter-actuator

Provides a number of endpoints:
beans - Complete list of Spring beans in your app
health - Application health information
metrics - Application metrics
mappings - Details around Request Mappings
and a lot more

Get Production-ready with Spring Boot Actuator

58

1: HAL (JSON Hypertext Application Language)
Simple format that gives a consistent and easy way to
hyperlink between resources in your API

2: HAL Explorer
An API explorer for RESTful Hypermedia APIs using HAL
Enable your non-technical teams to play with APIs

3: Spring Boot HAL Explorer
Auto-configures HAL Explorer for Spring Boot Projects
spring-data-rest-hal-explorer

Explore REST API using HAL Explorer

59

Maven

60

Things you do when writing code each day:
Create new projects
Manages dependencies and their versions

Spring, Spring MVC, Hibernate,...
Add/modify dependencies

Build a JAR file
Run your application locally in Tomcat or Jetty or ..
Run unit tests
Deploy to a test environment
and a lot more..

Maven helps you do all these and more...

What is Maven?

61

Let's explore Project Object Model - pom.xml
1: Maven dependencies: Frameworks & libraries used in a project

Ex: spring-boot-starter-web and spring-boot-starter-test
Why are there so many dependencies in the classpath?

Answer: Transitive Dependencies

(REMEMBER) Spring dependencies are DIFFERENT

2: Parent Pom: spring-boot-starter-parent
Dependency Management: spring-boot-dependencies
Properties: java.version, plugins and configurations

3: Name of our project: groupId + artifactId
1:groupId: Similar to package name

2:artifactId: Similar to class name

Why is it important?
Think about this: How can other projects use our new project?

Activity: help:effective-pom, dependency:tree & Eclipse UI
Let's add a new dependency: spring-boot-starter-web

Exploring Project Object Model - pom.xml

62

When we run a maven command, maven build life
cycle is used
Build LifeCycle is a sequence of steps

Validate
Compile
Test

Package
Integration Test

Verify
Install

Deploy

Exploring Maven Build Life Cycle

63

Maven follows Convention over Configuration
Pre defined folder structure
Almost all Java projects follow Maven structure (Consistency)

Maven central repository contains jars (and others) indexed
by artifact id and group id

Stores all the versions of dependencies

repositories > repository
pluginRepositories > pluginRepository

When a dependency is added to pom.xml, Maven tries to
download the dependency

Downloaded dependencies are stored inside your maven local repository

Local Repository : a temp folder on your machine where maven stores the
jar and dependency files that are downloaded from Maven Repository.

How does Maven Work?

64

mvn --version
mvn compile: Compile source files
mvn test-compile: Compile test files

OBSERVCE CAREFULLY: This will also compile source files

mvn clean: Delete target directory
mvn test: Run unit tests
mvn package: Create a jar
mvn help:effective-pom
mvn dependency:tree

Important Maven Commands

65

Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven

Example: Create executable jar package
Example: Run Spring Boot application
Example: Create a Container Image

Commands:
mvn spring-boot:repackage (create jar or war)

Run package using java -jar

mvn spring-boot:run (Run application)
mvn spring-boot:start (Non-blocking - Ex:integration tests)
mvn spring-boot:stop (Stop application)
mvn spring-boot:build-image (Build a container image)

Spring Boot Maven Plugin

66

Version scheme - MAJOR.MINOR.PATCH[-MODIFIER]
MAJOR: Significant amount of work to upgrade (10.0.0 to 11.0.0)
MINOR: Little to no work to upgrade (10.1.0 to 10.2.0)

PATCH: No work to upgrade (10.5.4 to 10.5.5)
MODIFIER: Optional modifier

Milestones - M1, M2, .. (10.3.0-M1,10.3.0-M2)

Release candidates - RC1, RC2, .. (10.3.0-RC1, 10.3.0-RC2)

Snapshots - SNAPSHOT

Release - Modifier will be ABSENT (10.0.0, 10.1.0)

Example versions in order:
10.0.0-SNAPSHOT, 10.0.0-M1, 10.0.0-M2, 10.0.0-RC1, 10.0.0-RC2, 10.0.0, ...

MY RECOMMENDATIONS:
Avoid SNAPSHOTs

Use ONLY Released versions in PRODUCTION

How are Spring Releases Versioned?

67

Gradle

68

Goal: Build, automate and deliver better software, faster
Build Anything: Cross-Platform Tool

Java, C/C++, JavaScript, Python, ...

Automate Everything: Completely Programmable
Complete flexibility

Uses a DSL
Supports Groovy and Kotlin

Deliver Faster: Blazing-fast builds
Compile avoidance to advanced caching

Can speed up Maven builds by up to 90%
Incrementality — Gradle runs only what is necessary

Example: Compiles only changed files

Build Cache — Reuses the build outputs of other Gradle builds with the same inputs

Same project layout as Maven
IDE support still evolving

Gradle

69

Top 3 Java Plugins for Gradle:
1: Java Plugin: Java compilation + testing + bundling capabilities

Default Layout
src/main/java: Production Java source

src/main/resources: Production resources, such as XML and properties files

src/test/java: Test Java source

src/test/resources: Test resources

Key Task: build

2: Dependency Management: Maven-like dependency management
group:'org.springframework', name:'spring-core',
version:'10.0.3.RELEASE' OR

Shortcut: org.springframework:spring-core:10.0.3.RELEASE

3: Spring Boot Gradle Plugin: Spring Boot support in Gradle
Package executable Spring Boot jar, Container Image (bootJar, bootBuildImage)

Use dependency management enabled by spring-boot-dependencies
No need to specify dependency version

Ex: implementation('org.springframework.boot:spring-boot-starter')

Gradle Plugins

70

Let's start with a few popular examples:
Spring Framework - Using Gradle since 2012 (Spring Framework v3.2.0)
Spring Boot - Using Gradle since 2020 (Spring Boot v2.3.0)

Spring Cloud - Continues to use Maven even today
Last update: Spring Cloud has no plans to switch

Top Maven Advantages: Familiar, Simple and Restrictive
Top Gradle Advantages: Faster build times and less verbose
What Do I Recommend: I'm sitting on the fence for now

Choose whatever tool best meets your projects needs
If your builds are taking really long, go with Gradle
If your builds are simple, stick with Maven

Maven vs Gradle - Which one to Use?

71

Microservices

72

73

74

75

76

77

78

79

Goal: Evolve with Microservices
V1 - Spring Boot 2.0.0 to 2.3.x
V2 - Spring Boot 2.4.0 to 3.0.0 to ...

Spring Cloud LoadBalancer (Ribbon)

Spring Cloud Gateway (Zuul)

Resilience4j (Hystrix)

NEW: Docker

NEW: Kubernetes

NEW: Observability
NEW: Micrometer (Spring Cloud Sleuth)

NEW: OpenTelemetry

Microservices - Evolution

80

V1(2.0.0 to 2.3.x)
V2 (2.4.x to 3.0.0 to ..)
Spring Boot 2.4.0+

Spring Boot 3.0.0+

Notes: v3-upgrade.md
Key Changes:

Observability - Ability of a system to measure its current state based on
the generated data

Monitoring is reactive while Observability is proactive

OpenTelemetry: One Standard for Logs + Traces + Metrics

Microservices - Spring Boot 2 vs Spring Boot 3

https://github.com/in28minutes/spring-microservices-v2

https://github.com/in28minutes/spring-microservices-v3

81

https://github.com/in28minutes/spring-microservices-v2
https://github.com/in28minutes/spring-microservices-v3

Microservices Evolve Quickly
V2 (Spring Boot - 2.4.x to 3.0.0 to LATEST)

Spring Cloud LoadBalancer instead of Ribbon
Spring Cloud Gateway instead of Zuul

Resilience4j instead of Hystrix
Docker: Containerize Microservices

Run microservices using Docker and Docker Compose

Kubernetes: Orchestrate all your Microservices with
Kubernetes
OpenTelemetry: One Standard - Logs, Traces & Metrics

Micrometer (Replaces Spring Cloud Sleuth)

Microservices - V2 - What's New

82

Ports Standardization
Application Port

Limits Microservice 8080, 8081, ...

Spring Cloud Config Server 8888

Currency Exchange Microservice 8000, 8001, 8002, ..

Currency Conversion Microservice 8100, 8101, 8102, ...

Netflix Eureka Naming Server 8761

API Gateway 8765

Zipkin Distributed Tracing Server 9411

83

Lot of configuration:
External Services
Database

Queue
Typical Application Configuration

Configuration variations:
1000s of Microservices

Multiple Environments
Multiple instances in each Environment

How do you manage all this
configuration?

Need for Centralized Configuration

84

Config Server

85

Environments

86

Environments

87

Environments

88

Microservices Overview

89

Currency Exchange Microservice

What is the exchange rate of one currency in another?

http://localhost:8000/currency-exchange/from/USD/to/INR

{
 "id":10001,
 "from":"USD",
 "to":"INR",
 "conversionMultiple":65.00,
 "environment":"8000 instance-id"
}

90

Currency Conversion Microservice

Convert 10 USD into INR

http://localhost:8100/currency-conversion/from/USD/to/INR/quantity/10

{
 "id": 10001,
 "from": "USD",
 "to": "INR",
 "conversionMultiple": 65.00,
 "quantity": 10,
 "totalCalculatedAmount": 650.00,
 "environment": "8000 instance-id"
}

91

Naming Server

92

Load Balancing

93

From

Simple, yet effective way to route to APIs
Provide cross cutting concerns:

Security
Monitoring/metrics

Built on top of Spring WebFlux (Reactive
Approach)
Features:

Match routes on any request attribute
Define Predicates and Filters

Integrates with Spring Cloud Discovery Client (Load
Balancing)

Path Rewriting

Spring Cloud Gateway

https://docs.spring.io

94

https://docs.spring.io/

Circuit Breaker

What if one of the services is down or is slow?
Impacts entire chain!

Questions:
Can we return a fallback response if a service is down?
Can we implement a Circuit Breaker pattern to reduce load?

Can we retry requests in case of temporary failures?
Can we implement rate limiting?

Solution: Circuit Breaker Framework - Resilience4j

95

Distributed Tracing

Complex call chain
How do you debug problems?
How do you trace requests across microservices?
Enter Distributed Tracing

96

Distributed Tracing

97

Microservices

Enterprises are heading towards microservices architectures
Build small focused microservices
Flexibility to innovate and build applications in different programming languages (Go, Java,
Python, JavaScript, etc)
BUT deployments become complex!
How can we have one way of deploying Go, Java, Python or JavaScript .. microservices?

Enter containers!

98

Docker
Getting Started

99

Deployment process described in a document
Operations team follows steps to:

Setup Hardware
Setup OS (Linux, Windows, Mac, ...)
Install Software (Java, Python, NodeJs, ...)
Setup Application Dependencies
Install Application

Manual approach:
Takes a lot of time
High chance of making mistakes

How does Traditional Deployment work?

100

Simplified Deployment Process:
OS doesn't matter
Programming Language does not matter
Hardware does not matter

01: Developer creates a Docker Image
02: Operations run the Docker Image

Using a very simple command

Takeaway: Once you have a Docker Image, irrespective
of what the docker image contains, you run it the same
way!

Make your operations team happy

Understanding Deployment Process with Docker

101

Docker image has everything you need to run your
application:

Operating System
Application Runtime (JDK or Python or NodeJS)
Application code and dependencies

You can run a Docker container the same way
everywhere:

Your local machine
Corporate data center
Cloud

How does Docker Make it Easy?

102

Run Docker Containers Anywhere

All that you need is a Docker Runtime (like Docker Engine)

103

Why is Docker Popular?

104

What's happening in the Background?

Docker image is downloaded from Docker Registry (Default: Docker Hub)

Image is a set of bytes

Container: Running Image
in28min/hello-world-nodejs: Repository Name
0.0.1.RELEASE: Tag (or version)

-p hostPort:containerPort: Maps internal docker port (container port) to a port on the host
(host port)

By default, Docker uses its own internal network called bridge network

We are mapping a host port so that users can access your application

-d: Detatched Mode (Don't tie up the terminal)

docker container run -d -p 5000:5000 in28min/hello-world-nodejs:0.0.1.RELEASE

https://hub.docker.com/r/in28min/hello-world-nodejs

105

https://hub.docker.com/r/in28min/hello-world-nodejs

Docker Image: A package representing specific
version of your application (or software)

Contains everything your app needs
OS, software, code, dependencies

Docker Registry: A place to store your docker images
Docker Hub: A registry to host Docker images
Docker Repository: Docker images for a specific app
(tags are used to differentiate different images)
Docker Container: Runtime instance of a docker
image
Dockerfile: File with instructions to create a Docker
image

Understanding Docker Terminology

106

Dockerfile - 1 - Creating Docker Images

Dockerfile contains instruction to create Docker images
FROM - Sets a base image
COPY - Copies new files or directories into image

EXPOSE - Informs Docker about the port that the container listens on at runtime
ENTRYPOINT - Configure a command that will be run at container launch

docker build -t in28min/hello-world:v1 .

FROM openjdk:18.0-slim
COPY target/*.jar app.jar
EXPOSE 5000
ENTRYPOINT ["java","-jar","/app.jar"]

107

Dockerfile - 2 - Build Jar File - Multi Stage

Let build the jar file as part of creation of Docker Image
Your build does NOT make use of anything built on your local machine

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app
COPY . /home/app
RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000
COPY --from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java -jar /app.jar"]

108

Dockerfile - 3 - Improve Layer Caching

Docker caches every layer and tries to reuse it
Let's make use of this feature to make our build efficient

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app

COPY ./pom.xml /home/app/pom.xml
COPY ./src/main/java/com/example/demodocker/DemoDockerApplication.java /
 /home/app/src/main/java/com/example/demodocker/DemoDockerApplication.java

RUN mvn -f /home/app/pom.xml clean package

COPY . /home/app
RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000
COPY --from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java -jar /app.jar"]

109

Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven

Example: Create executable jar package
Example: Run Spring Boot application
Example: Create a Container Image
Commands:

mvn spring-boot:repackage (create jar or war)
Run package using java -jar

mvn spring-boot:run (Run application)

mvn spring-boot:start (Non-blocking. Use it to run integration tests.)

mvn spring-boot:stop (Stop application started with start command)

mvn spring-boot:build-image (Build a container image)

Spring Boot Maven Plugin - Create Docker Image

110

Creating Docker Images - Dockerfile

Dockerfile contains instruction to create Docker images
FROM - Sets a base image

WORKDIR - sets the working directory
RUN - execute a command

EXPOSE - Informs Docker about the port that the container listens on at runtime
COPY - Copies new files or directories into image

CMD - Default command for an executing container

FROM node:8.16.1-alpine
WORKDIR /app
COPY . /app
RUN npm install
EXPOSE 5000
CMD node index.js

111

Requirement : I want 10 instances of
Microservice A container, 15 instances
of Microservice B container and
Typical Features:

Auto Scaling - Scale containers based on
demand
Service Discovery - Help microservices find
one another
Load Balancer - Distribute load among
multiple instances of a microservice

Self Healing - Do health checks and replace
failing instances

Zero Downtime Deployments - Release new
versions without downtime

Container Orchestration

112

AWS Specific
AWS Elastic Container Service (ECS)
AWS Fargate : Serverless version of AWS ECS

Cloud Neutral - Kubernetes
AWS - Elastic Kubernetes Service (EKS)
Azure - Azure Kubernetes Service (AKS)
GCP - Google Kubernetes Engine (GKE)

EKS/AKS does not have a free tier!
We use GCP and GKE!

Container Orchestration Options

113

Kubernetes

114

Most popular open source container
orchestration solution
Provides Cluster Management
(including upgrades)

Each cluster can have different types of
virtual machines

Provides all important container
orchestration features:

Auto Scaling
Service Discovery
Load Balancer
Self Healing
Zero Downtime Deployments

Kubernetes

115

Managed Kubernetes service
Minimize operations with auto-repair (repair failed nodes) and
auto-upgrade (use latest version of K8S always) features
Provides Pod and Cluster Autoscaling
Enable Cloud Logging and Cloud Monitoring with simple
configuration
Uses Container-Optimized OS, a hardened OS built by Google
Provides support for Persistent disks and Local SSD

Google Kubernetes Engine (GKE)

116

Let's Have Some Fun: Let's get on a journey with Kubernetes:
Let's create a cluster, deploy a microservice and play with it in 13 steps!

1: Create a Kubernetes cluster with the default node pool
gcloud container clusters create or use cloud console

2: Login to Cloud Shell
3: Connect to the Kubernetes Cluster

gcloud container clusters get-credentials my-cluster --zone us-central1-a --project
solid-course-258105

Kubernetes - A Microservice Journey - Getting Started

117

4: Deploy Microservice to Kubernetes:
Create deployment & service using kubectl commands

kubectl create deployment hello-world-rest-api --image=in28min/hello-world-rest-api:0.0.1.RELEASE

kubectl expose deployment hello-world-rest-api --type=LoadBalancer --port=8080

5: Increase number of instances of your microservice:
kubectl scale deployment hello-world-rest-api --replicas=2

6: Increase number of nodes in your Kubernetes cluster:
gcloud container clusters resize my-cluster --node-pool my-node-pool --num-nodes 5

You are NOT happy about manually increasing number of instances and nodes!

Kubernetes - A Microservice Journey - Deploy Microservice

118

7: Setup auto scaling for your microservice:
kubectl autoscale deployment hello-world-rest-api --max=10 --cpu-percent=70

Also called horizontal pod autoscaling - HPA - kubectl get hpa

8: Setup auto scaling for your Kubernetes Cluster
gcloud container clusters update cluster-name --enable-autoscaling --min-nodes=1 --
max-nodes=10

9: Add some application configuration for your microservice
Config Map - kubectl create configmap todo-web-application-config --from-
literal=RDS_DB_NAME=todos

10: Add password configuration for your microservice
Kubernetes Secrets - kubectl create secret generic todo-web-application-secrets-1 --
from-literal=RDS_PASSWORD=dummytodos

Kubernetes - A Microservice Journey - Auto Scaling and ..

119

Kubernetes Deployment YAML - Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: hello-world-rest-api
 name: hello-world-rest-api
 namespace: default
spec:
 replicas: 3
 selector:
 matchLabels:
 app: hello-world-rest-api
 template:
 metadata:
 labels:
 app: hello-world-rest-api
 spec:
 containers:
 - image: in28min/hello-world-rest-api:0.0.3.RELEASE
 name: hello-world-rest-api

120

Kubernetes Deployment YAML - Service
apiVersion: v1
kind: Service
metadata:
 labels:
 app: hello-world-rest-api
 name: hello-world-rest-api
 namespace: default
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 app: hello-world-rest-api
 sessionAffinity: None
 type: LoadBalancer

121

11: Deploy a new microservice which needs nodes with a GPU
attached

Attach a new node pool with GPU instances to your cluster
gcloud container node-pools create POOL_NAME --cluster CLUSTER_NAME

gcloud container node-pools list --cluster CLUSTER_NAME

Deploy the new microservice to the new pool by setting up nodeSelector in the
deployment.yaml

nodeSelector: cloud.google.com/gke-nodepool: POOL_NAME

12: Delete the Microservices
Delete service - kubectl delete service

Delete deployment - kubectl delete deployment

13: Delete the Cluster
gcloud container clusters delete

Kubernetes - A Microservice Journey - The End!

122

Cluster : Group of Compute Engine instances:
Master Node(s) - Manages the cluster
Worker Node(s) - Run your workloads (pods)

Master Node (Control plane) components:
API Server - Handles all communication for a K8S
cluster (from nodes and outside)
Scheduler - Decides placement of pods

Control Manager - Manages deployments &
replicasets

etcd - Distributed database storing the cluster state

Worker Node components:
Runs your pods
Kubelet - Manages communication with master
node(s)

Google Kubernetes Engine (GKE) Cluster

123

Smallest deployable unit in Kubernetes
A Pod contains one or more containers
Each Pod is assigned an ephemeral IP address
All containers in a pod share:

Network

Storage
IP Address

Ports and
Volumes (Shared persistent disks)

POD statuses : Running /Pending /Succeeded
/Failed /Unknown

Kubernetes - Pods

124

A deployment is created for each microservice:
kubectl create deployment m1 --image=m1:v1
Deployment represents a microservice (with all its releases)

Deployment manages new releases ensuring zero downtime

Replica set ensures that a specific number of pods are
running for a specific microservice version

kubectl scale deployment m2 --replicas=2
Even if one of the pods is killed, replica set will launch a new one

Deploy V2 of microservice - Creates a new replica set
kubectl set image deployment m1 m1=m1:v2
V2 Replica Set is created
Deployment updates V1 Replica Set and V2 Replica Set based on
the release strategies

Kubernetes - Deployment vs Replica Set

125

Kubernetes - Service
Each Pod has its own IP address:

How do you ensure that external users are not impacted when:
A pod fails and is replaced by replica set

A new release happens and all existing pods of old release are replaced by ones of new release

Create Service
kubectl expose deployment name --type=LoadBalancer --port=80

Expose PODs to outside world using a stable IP Address

Ensures that the external world does not get impacted as pods go down and come up

Three Types:
ClusterIP: Exposes Service on a cluster-internal IP

Use case: You want your microservice only to be available inside the cluster (Intra cluster communication)

LoadBalancer: Exposes Service externally using a cloud provider's load balancer
Use case: You want to create individual Load Balancer's for each microservice

NodePort: Exposes Service on each Node's IP at a static port (the NodePort)
Use case: You DO not want to create an external Load Balancer for each microservice (You can create one Ingress
component to load balance multiple microservices)

126

Kubernetes - Liveness and Readiness Probes

Kubernetes uses probes to check the health of a microservice:
If readiness probe is not successful, no traffic is sent
If liveness probe is not successful, pod is restarted

Spring Boot Actuator (>=2.3) provides inbuilt readiness and liveness probes:
/health/readiness

/health/liveness

127

What Next?

128

129

