
Master Spring & Spring Boot
with Hibernate & React

1

Top frameworks in the Java world today
Spring Framework
Spring Boot

Beginners find the first steps very difficult:
Lot of terminology: Dependency Injection, IOC, Auto
wiring, Auto configuration, Starter Projects ..
Variety of applications: Web app, REST API, Full Stack
Variety of other framework, tool and platform
integrations: Maven, Gradle, Spring Data, JPA, Hibernate,
Docker and Cloud

Getting Started

2

We've created a simple path focusing on the
Fundamentals

Using a Hands-on Approach

You will build more than 10 Maven and Gradle
projects during this course!
This course is designed for absolute beginners to
Spring & Spring Boot
Our Goal : Help you start your journey with Spring &
Spring Boot

Simple Path - Learn Spring & Spring Boot & ...

3

Learning Spring & Spring Boot
can be tricky:

Lots of new terminology, tools and
frameworks

As time passes, we forget things
How do you improve your
chances of remembering
things?

Active learning - think & make notes
Review the presentation once in a
while

How do you put your best foot forward?

4

Videos with:
Presentations &
Demos where we build projects

Quizzes:
To Reinforce Concepts

(Recommended) Take your
time. Do not hesitate to
replay videos!
(Recommended) Have Fun!

Our Approach

5

6

Spring Framework

7

You can build a variety of applications using
Java, Spring and Spring Boot:

Web
REST API
Full Stack
Microservices

Irrespective of the app you are building:
Spring framework provides all the core features

Understanding Spring helps you learn Spring Boot easily

Helps in debugging problems quickly

In this module, we focus extensively on Spring
Framework

Getting Started with Spring Framework - Why?

8

Goal: Understand core features of Spring Framework
Approach: Build a Loose Coupled Hello World Gaming
App with Modern Spring Approach

Get Hands-on with Spring and understand:
Why Spring?

Terminology
Tight Coupling and Loose Coupling

IOC Container

Application Context

Component Scan

Dependency Injection

Spring Beans

Auto Wiring

Getting Started with Spring Framework - Goals

9

Design Game Runner to run games (Mario, SuperContra,
Pacman etc) in an iterative approach:

Iteration 1: Tightly Coupled Java Code
GameRunner class

Game classes: Mario, SuperContra, Pacman etc

Iteration 2: Loose Coupling - Interfaces
GameRunner class

GamingConsole interface
Game classes: Mario, SuperContra, Pacman etc

Iteration 3: Loose Coupling - Spring Level 1
Spring Beans

Spring framework will manage objects and wiring

Iteration 4: Loose Coupling - Spring Level 2
Spring Annotations

Spring framework will create, manage & auto-wire objects

...

Getting Started with Spring Framework - Approach

10

Very Few Spring Framework users understand
fundamentals:

Spring Container vs Spring Context vs IOC Container vs
Application Context

Java Bean vs Spring Bean
Auto Wiring vs Dependency Injection
How can you build loosely coupled applications?

Making good use of Java Interfaces along with Spring

We spent multiple weeks designing this section to
help you understand these fundamentals
This is the most important section of the course:

Focus really well to understand the fundamentals
Good luck!

Do you want to do well at interviews?

11

Local Variable Type Inference

Java compiler infers the type of the variable at compile time
Introduced in Java 10
You can add final if you want
var can also be used in loops
Remember:

You cannot assign null
var is NOT a keyword
CANNOT be used for member variables, method parameters or return types

Best Practices:
Good variable names
Minimize Scope

// List<String> numbers = new ArrayList<>(list);
var numbers = new ArrayList<>(list);

12

Coupling: How much work is involved in changing something?
Coupling is important everywhere:

An engine is tightly coupled to a Car

A wheel is loosely coupled to a Car

You can take a laptop anywhere you go

A computer, on the other hand, is a little bit more difficult to move

Coupling is even more important in building great so�ware
Only thing constant in technology is change

Business requirements change

Frameworks change

Code changes

We want Loose Coupling as much as possible

We want to make functional changes with as less code changes as possible

Let's explore how Java Interfaces and Spring Framework help
with Loose Coupling!

Why is Coupling Important?

13

Question 1: Spring Container vs Spring Context vs IOC
Container vs Application Context
Question 2: Java Bean vs Spring Bean
Question 3: How can I list all beans managed by
Spring Framework?
Question 4: What if multiple matching beans are
available?
Question 5: Spring is managing objects and
performing auto-wiring.

BUT aren't we writing the code to create objects?

How do we get Spring to create objects for us?

Question 6: Is Spring really making things easy?

Spring Questions You Might Be Thinking About

14

Spring Container: Manages Spring beans &
their lifecycle
1: Bean Factory: Basic Spring Container
2: Application Context: Advanced Spring
Container with enterprise-specific features

Easy to use in web applications

Easy internationalization
Easy integration with Spring AOP

Which one to use?: Most enterprise
applications use Application Context

Recommended for web applications, web services -
REST API and microservices

What is Spring Container?

15

Java Bean: Classes adhering to 3 constraints:
1: Have public default (no argument) constructors
2: Allow access to their properties using getter and
setter methods
3: Implement java.io.Serializable

POJO: Plain Old Java Object
No constraints

Any Java Object is a POJO!

Spring Bean: Any Java object that is managed
by Spring

Spring uses IOC Container (Bean Factory or
Application Context) to manage these objects

Exploring Java Bean vs POJO vs Spring Bean

16

Constructor-based : Dependencies are set
by creating the Bean using its Constructor
Setter-based : Dependencies are set by
calling setter methods on your beans
Field: No setter or constructor.
Dependency is injected using reflection.
Question: Which one should you use?

Spring team recommends Constructor-based
injection as dependencies are automatically set
when an object is created!

Exploring Spring - Dependency Injection Types

17

When a dependency needs to be @Autowired, IOC container
looks for matches/candidates (by name and/or type)

1: If no match is found
Result: Exception is thrown

You need to help Spring Framework find a match
Typical problems:

@Component (or ..) missing

Class not in component scan

2: One match is found
Result: Autowiring is successful

3: Multiple candidates
Result: Exception is thrown

You need to help Spring Framework choose between the candidates
1: Mark one of them as @Primary

If only one of the candidates is marked @Primary, it becomes the auto-wired value

2: Use @Qualifier - Example: @Qualifier("myQualifierName")
Provides more specific control

Can be used on a class, member variables and method parameters

Exploring auto-wiring in depth

18

@Primary vs @Qualifier - Which one to use?

@Primary - A bean should be given preference when multiple candidates are qualified
@Qualifier - A specific bean should be auto-wired (name of the bean can be used as qualifier)

ALWAYS think from the perspective of the class using the SortingAlgorithm:
1: Just @Autowired: Give me (preferred) SortingAlgorithm

2: @Autowired + @Qualifier: I only want to use specific SortingAlgorithm - RadixSort

(REMEMBER) @Qualifier has higher priority then @Primary

@Component @Primary
class QuickSort implement SortingAlgorithm {}

@Component
class BubbleSort implement SortingAlgorithm {}

@Component @Qualifier("RadixSortQualifier")
class RadixSort implement SortingAlgorithm {}

@Component
class ComplexAlgorithm
 @Autowired
 private SortingAlgorithm algorithm;

@Component
class AnotherComplexAlgorithm
 @Autowired @Qualifier("RadixSortQualifier")
 private SortingAlgorithm iWantToUseRadixSortOnly;

19

@Component (..): An instance of class will be managed by
Spring framework
Dependency: GameRunner needs GamingConsole impl!

GamingConsole Impl (Ex: MarioGame) is a dependency of GameRunner

Component Scan: How does Spring Framework find
component classes?

It scans packages! (@ComponentScan("com.in28minutes"))

Dependency Injection: Identify beans, their dependencies
and wire them together (provides IOC - Inversion of Control)

Spring Beans: An object managed by Spring Framework
IoC container: Manages the lifecycle of beans and dependencies

Types: ApplicationContext (complex), BeanFactory (simpler features - rarely used)

Autowiring: Process of wiring in dependencies for a Spring Bean

Spring Framework - Important Terminology

20

@Component vs @Bean
Heading @Component @Bean

Where? Can be used on any Java class Typically used on methods in Spring
Configuration classes

Ease of use Very easy. Just add an annotation. You write all the code.

Autowiring Yes - Field, Setter or Constructor Injection Yes - method call or method parameters

Who creates
beans?

Spring Framework You write bean creation code

Recommended
For

Instantiating Beans for Your Own Application
Code: @Component

1:Custom Business Logic
2: Instantiating Beans for 3rd-party
libraries: @Bean

Beans per class? One (Singleton) or Many (Prototype) One or Many - You can create as many as
you want

21

-
In Game Runner Hello World App, we have very few classes
BUT Real World applications are much more complex:

Multiple Layers (Web, Business, Data etc)
Each layer is dependent on the layer below it!

Example: Business Layer class talks to a Data Layer class
Data Layer class is a dependency of Business Layer class

There are thousands of such dependencies in every application!

With Spring Framework:
INSTEAD of FOCUSING on objects, their dependencies and wiring

You can focus on the business logic of your application!

Spring Framework manages the lifecycle of objects:
Mark components using annotations: @Component (and others..)

Mark dependencies using @Autowired
Allow Spring Framework to do its magic!

Ex: BusinessCalculationService

Why do we have a lot of Dependencies?

22

Create classes and interfaces as needed
Use constructor injection to inject dependencies

Make MongoDbDataService as primary

Create a Spring Context
Prefer annotations

Retrieve BusinessCalculationService bean and run findMax method

Exercise - BusinessCalculationService
public interface DataService
 int[] retrieveData();

public class MongoDbDataService implements DataService
 public int[] retrieveData()
 return new int[] { 11, 22, 33, 44, 55 };

public class MySQLDataService implements DataService
 public int[] retrieveData()
 return new int[] { 1, 2, 3, 4, 5 };

public class BusinessCalculationService
 public int findMax()
 return Arrays.stream(dataService.retrieveData())
 .max().orElse(0);

23

Default initialization for Spring Beans: Eager
Eager initialization is recommended:

Errors in the configuration are discovered immediately at
application startup

However, you can configure beans to be lazily initialized
using Lazy annotation:

NOT recommended (AND) Not frequently used

Lazy annotation:
Can be used almost everywhere @Component and @Bean are used
Lazy-resolution proxy will be injected instead of actual dependency
Can be used on Configuration (@Configuration) class:

All @Bean methods within the @Configuration will be lazily initialized

Exploring Lazy Initialization of Spring Beans

24

Comparing Lazy Initialization vs Eager Initialization
Heading Lazy Initialization Eager Initialization

Initialization time Bean initialized when it is first made use
of in the application

Bean initialized at startup of the
application

Default NOT Default Default

Code Snippet @Lazy OR @Lazy(value=true) @Lazy(value=false) OR (Absence
of @Lazy)

What happens if there are
errors in initializing?

Errors will result in runtime exceptions Errors will prevent application
from starting up

Usage Rarely used Very frequently used

Memory Consumption Less (until bean is initialized) All beans are initialized at startup

Recommended Scenario Beans very rarely used in your app Most of your beans

25

Spring Beans are defined to be used in a specific scope:
Singleton - One object instance per Spring IoC container
Prototype - Possibly many object instances per Spring IoC
container
Scopes applicable ONLY for web-aware Spring ApplicationContext

Request - One object instance per single HTTP request

Session - One object instance per user HTTP Session

Application - One object instance per web application runtime

Websocket - One object instance per WebSocket instance

Java Singleton (GOF) vs Spring Singleton
Spring Singleton: One object instance per Spring IoC container
Java Singleton (GOF): One object instance per JVM

Spring Bean Scopes

26

Prototype vs Singleton Bean Scope
Heading Prototype Singleton

Instances Possibly Many per Spring IOC Container One per Spring IOC Container

Beans New bean instance created every time the
bean is referred to

Same bean instance reused

Default NOT Default Default

Code Snippet @Scope(value=
ConfigurableBeanFactory.SCOPE_PROTOTYPE)

@Scope(value=
ConfigurableBeanFactory.SCOPE_SINGLETON)
OR Default

Usage Rarely used Very frequently used

Recommended
Scenario

Stateful beans Stateless beans

27

Enterprise capabilities were initially built into JDK
With time, they were separated out:

J2EE - Java 2 Platform Enterprise Edition
Java EE - Java Platform Enterprise Edition (Rebranding)

Jakarta EE (Oracle gave Java EE rights to the Eclipse
Foundation)

Important Specifications:
Jakarta Server Pages (JSP)

Jakarta Standard Tag Library (JSTL)

Jakarta Enterprise Beans (EJB)

Jakarta RESTful Web Services (JAX-RS)

Jakarta Bean Validation

Jakarta Contexts and Dependency Injection (CDI)

Jakarta Persistence (JPA)

Supported by Spring 6 and Spring Boot 3
That's why we use jakarta. packages (instead of javax.)

Evolution of Jakarta EE: vs J2EE vs Java EE

28

Spring Framework V1 was released in 2004
CDI specification introduced into Java EE 6 platform in
December 2009
Now called Jakarta Contexts and Dependency Injection (CDI)
CDI is a specification (interface)

Spring Framework implements CDI

Important Inject API Annotations:
Inject (~Autowired in Spring)

Named (~Component in Spring)
Qualifier

Scope
Singleton

Jakarta Contexts & Dependency Injection (CDI)

29

Let's Compare: Annotations vs XML Configuration
Heading Annotations XML Configuration

Ease of use Very Easy (defined close to source - class, method and/or
variable)

Cumbersome

Short and concise Yes No

Clean POJOs No. POJOs are polluted with Spring Annotations Yes. No change in Java
code.

Easy to Maintain Yes No

Usage Frequency Almost all recent projects Rarely

Recommendation Either of them is fine BUT be consistent Do NOT mix both

Debugging
difficulty

Hard Medium

30

@Component - Generic annotation applicable for any class
Base for all Spring Stereotype Annotations
Specializations of @Component:

@Service - Indicates that an annotated class has business logic

@Controller - Indicates that an annotated class is a "Controller" (e.g. a web controller)
Used to define controllers in your web applications and REST API

@Repository - Indicates that an annotated class is used to retrieve and/or manipulate
data in a database

What should you use?
(MY RECOMMENDATION) Use the most specific annotation possible

Why?
By using a specific annotation, you are giving more information to the framework about
your intentions.

You can use AOP at a later point to add additional behavior
Example: For @Repository, Spring automatically wires in JDBC Exception translation features

Spring Stereotype Annotations - @Component & more..

31

Quick Review of Important Spring Annotations
Annotation Description

@Configuration Indicates that a class declares one or more @Bean methods and may be processed by the
Spring container to generate bean definitions

@ComponentScan Define specific packages to scan for components. If specific packages are not defined,
scanning will occur from the package of the class that declares this annotation

@Bean Indicates that a method produces a bean to be managed by the Spring container

@Component Indicates that an annotated class is a "component"

@Service Specialization of @Component indicating that an annotated class has business logic

@Controller Specialization of @Component indicating that an annotated class is a "Controller" (e.g. a
web controller). Used to define controllers in your web applications and REST API

@Repository Specialization of @Component indicating that an annotated class is used to retrieve
and/or manipulate data in a database

32

Quick Review of Important Spring Annotations - 2
Annotation Description

@Primary Indicates that a bean should be given preference when
multiple candidates are qualified to autowire a single-
valued dependency

@Qualifier Used on a field or parameter as a qualifier for
candidate beans when autowiring

@Lazy Indicates that a bean has to be lazily initialized.
Absence of @Lazy annotation will lead to eager
initialization.

@Scope (value =
ConfigurableBeanFactory.SCOPE_PROTOTYPE)

Defines a bean to be a prototype - a new instance will
be created every time you refer to the bean. Default
scope is singleton - one instance per IOC container.

33

Quick Review of Important Spring Annotations - 3
Annotation Description

@PostConstruct Identifies the method that will be executed a�er dependency injection is done to perform
any initialization

@PreDestroy Identifies the method that will receive the callback notification to signal that the instance is
in the process of being removed by the container. Typically used to release resources that it
has been holding.

@Named Jakarta Contexts & Dependency Injection (CDI) Annotation similar to Component

@Inject Jakarta Contexts & Dependency Injection (CDI) Annotation similar to Autowired

34

Quick Review of Important Spring Concepts
Concept Description

Dependency
Injection

Identify beans, their dependencies and wire them together (provides IOC - Inversion of
Control)

Constr. injection Dependencies are set by creating the Bean using its Constructor

Setter injection Dependencies are set by calling setter methods on your beans

Field injection No setter or constructor. Dependency is injected using reflection.

IOC Container Spring IOC Context that manages Spring beans & their lifecycle

Bean Factory Basic Spring IOC Container

Application
Context

Advanced Spring IOC Container with enterprise-specific features - Easy to use in web
applications with internationalization features and good integration with Spring AOP

Spring Beans Objects managed by Spring

Auto-wiring Process of wiring in dependencies for a Spring Bean

35

Spring Core : IOC Container, Dependency
Injection, Auto Wiring, ..

These are the fundamental building blocks to:
Building web applications

Creating REST API

Implementing authentication and authorization

Talking to a database

Integrating with other systems

Writing great unit tests

Let's now get a Spring Big Picture:
Spring Framework
Spring Modules
Spring Projects

Spring Big Picture - Framework, Modules and Projects

36

Spring Framework contains multiple Spring Modules:
Fundamental Features: Core (IOC Container, Dependency
Injection, Auto Wiring, ..)

Web: Spring MVC etc (Web applications, REST API)
Web Reactive: Spring WebFlux etc

Data Access: JDBC, JPA etc
Integration: JMS etc
Testing: Mock Objects, Spring MVC Test etc

No Dumb Question: Why is Spring Framework divided
into Modules?

Each application can choose modules they want to make use of
They do not need to make use of everything in Spring
framework!

Spring Big Picture - Framework and Modules

37

Application architectures evolve continuously
Web > REST API > Microservices > Cloud > ...

Spring evolves through Spring Projects:
First Project: Spring Framework
Spring Security: Secure your web application or REST API
or microservice
Spring Data: Integrate the same way with different types
of databases : NoSQL and Relational
Spring Integration: Address challenges with integration
with other applications
Spring Boot: Popular framework to build microservices
Spring Cloud: Build cloud native applications

Spring Big Picture - Spring Projects

38

Hierarchy: Spring Projects > Spring Framework >
Spring Modules
Why is Spring Eco system popular?

Loose Coupling: Spring manages creation and wiring of beans
and dependencies

Makes it easy to build loosely coupled applications

Make writing unit tests easy! (Spring Unit Testing)

Reduced Boilerplate Code: Focus on Business Logic
Example: No need for exception handling in each method!

All Checked Exceptions are converted to Runtime or Unchecked Exceptions

Architectural Flexibility: Spring Modules and Projects
You can pick and choose which ones to use (You DON'T need to use all of
them!)

Evolution with Time: Microservices and Cloud
Spring Boot, Spring Cloud etc!

Spring Big Picture - Framework, Modules and Projects

39

Spring Boot
in 10(ish) Steps

40

WHY Spring Boot?
You can build web apps & REST API WITHOUT Spring
Boot
What is the need for Spring Boot?

WHAT are the goals of Spring Boot?
HOW does Spring Boot work?
COMPARE Spring Boot vs Spring MVC vs
Spring

Getting Started with Spring Boot

41

1: Understand the world before Spring Boot (10000 Feet)
2: Create a Spring Boot Project
3: Build a simple REST API using Spring Boot
4: Understand the MAGIC of Spring Boot

Spring Initializr
Starter Projects
Auto Configuration
Developer Tools
Actuator
...

Getting Started with Spring Boot - Approach

42

Setting up Spring Projects before Spring
Boot was NOT easy!
We needed to configure a lot of things
before we have a production-ready
application

World Before Spring Boot!

43

World Before Spring Boot - 1 - Dependency Management

Manage frameworks and versions
REST API - Spring framework, Spring MVC framework, JSON binding framework, ..

Unit Tests - Spring Test, Mockito, JUnit, ...

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>6.2.2.RELEASE</version>
</dependency>
<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.13.3</version>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

44

World Before Spring Boot - 2 - web.xml

Example: Configure DispatcherServlet for Spring MVC

<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/todo-servlet.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

45

World Before Spring Boot - 3 - Spring Configuration

Define your Spring Configuration
Component Scan

View Resolver
....

<context:component-scan base-package="com.in28minutes" />

<bean
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/views/</value>
 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
</bean>

46

World Before Spring Boot - 4 - NFRs

Logging
Error Handling
Monitoring

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <path>/</path>
 <contextReloadable>true</contextReloadable>
 </configuration>
</plugin>

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

47

Setting up Spring Projects before Spring
Boot was NOT easy!

1: Dependency Management (pom.xml)
2: Define Web App Configuration (web.xml)
3: Manage Spring Beans (context.xml)
4: Implement Non Functional Requirements (NFRs)

AND repeat this for every new project!
Typically takes a few days to setup for each
project (and countless hours to maintain)

World Before Spring Boot!

48

Understanding Power of Spring Boot

1: Create a Spring Boot Project
2: Build a simple REST API using Spring Boot

// http://localhost:8080/courses
[
 {
 "id": 1,
 "name": "Learn AWS",
 "author": "in28minutes"
 }
]

49

Help you build PRODUCTION-READY apps QUICKLY
Build QUICKLY

Spring Initializr
Spring Boot Starter Projects
Spring Boot Auto Configuration
Spring Boot DevTools

Be PRODUCTION-READY
Logging
Different Configuration for Different Environments

Profiles, ConfigurationProperties

Monitoring (Spring Boot Actuator)
...

What's the Most Important Goal of Spring Boot?

50

Spring Boot
BUILD QUICKLY

51

I need a lot of frameworks to build application features:
Build a REST API: I need Spring, Spring MVC, Tomcat, JSON conversion...
Write Unit Tests: I need Spring Test, JUnit, Mockito, ...

How can I group them and make it easy to build applications?
Starters: Convenient dependency descriptors for diff. features

Spring Boot provides variety of starter projects:
Web Application & REST API - Spring Boot Starter Web (spring-webmvc,
spring-web, spring-boot-starter-tomcat, spring-boot-starter-json)
Unit Tests - Spring Boot Starter Test
Talk to database using JPA - Spring Boot Starter Data JPA
Talk to database using JDBC - Spring Boot Starter JDBC
Secure your web application or REST API - Spring Boot Starter Security

Exploring Spring Boot Starter Projects

52

I need lot of configuration to build Spring app:
Component Scan, DispatcherServlet, Data Sources, JSON Conversion, ...

How can I simplify this?
Auto Configuration: Automated configuration for your app

Decided based on:
Which frameworks are in the Class Path?

What is the existing configuration (Annotations etc)?

Example: Spring Boot Starter Web
Dispatcher Servlet (DispatcherServletAutoConfiguration)

Embedded Servlet Container - Tomcat is the default
(EmbeddedWebServerFactoryCustomizerAutoConfiguration)

Default Error Pages (ErrorMvcAutoConfiguration)
Bean<->JSON
(JacksonHttpMessageConvertersConfiguration)

Exploring Spring Boot Auto Configuration

53

Questions:
Who is launching the Spring Context?
Who is triggering the component scan?

Who is enabling auto configuration?

Answer: @SpringBootApplication
1: @SpringBootConfiguration: Indicates that a class provides Spring Boot
application @Configuration.

2: @EnableAutoConfiguration: Enable auto-configuration of the Spring
Application Context,

3: @ComponentScan: Enable component scan (for current package, by
default)

Understanding the Glue - @SpringBootApplication

54

Increase developer productivity
Why do you need to restart the server
manually for every code change?
Remember: For pom.xml dependency
changes, you will need to restart server
manually

Build Faster with Spring Boot DevTools

55

Spring Boot
PRODUCTION-READY

56

Applications have different environments: Dev, QA,
Stage, Prod, ...
Different environments need different configuration:

Different Databases
Different Web Services

How can you provide different configuration for
different environments?

Profiles: Environment specific configuration

How can you define externalized configuration for
your application?

ConfigurationProperites: Define externalized configuration

Managing App. Configuration using Profiles

57

How do you deploy your application?
Step 1 : Install Java
Step 2 : Install Web/Application Server

Tomcat/WebSphere/WebLogic etc

Step 3 : Deploy the application WAR (Web ARchive)
This is the OLD WAR Approach

Complex to setup!

Embedded Server - Simpler alternative
Step 1 : Install Java
Step 2 : Run JAR file

Make JAR not WAR (Credit: Josh Long!)
Embedded Server Examples:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-undertow

Simplify Deployment with Spring Boot Embedded Servers

58

Monitor and manage your application in your
production
Provides a number of endpoints:

beans - Complete list of Spring beans in your app
health - Application health information
metrics - Application metrics
mappings - Details around Request Mappings

Monitor Applications using Spring Boot Actuator

59

Understanding Spring Boot vs Spring MVC vs Spring
Spring Boot vs Spring MVC vs Spring: What's in it?

Spring Framework: Dependency Injection
@Component, @Autowired, Component Scan etc..

Just Dependency Injection is NOT sufficient (You need other frameworks to build apps)
Spring Modules and Spring Projects: Extend Spring Eco System

Provide good integration with other frameworks (Hibernate/JPA, JUnit & Mockito for Unit Testing)

Spring MVC (Spring Module): Simplify building web apps and REST API
Building web applications with Struts was very complex

@Controller, @RestController, @RequestMapping("/courses")

Spring Boot (Spring Project): Build PRODUCTION-READY apps QUICKLY
Starter Projects - Make it easy to build variety of applications

Auto configuration - Eliminate configuration to setup Spring, Spring MVC and other frameworks!

Enable non functional requirements (NFRs):
Actuator: Enables Advanced Monitoring of applications

Embedded Server: No need for separate application servers!

Logging and Error Handling

Profiles and ConfigurationProperties

60

Goal: 10,000 Feet overview of Spring Boot
Help you understand the terminology!

Starter Projects

Auto Configuration

Actuator

DevTools

Advantages: Get started quickly with production ready
features!

Spring Boot - Review

61

JPA and Hibernate
in 10 Steps

62

Build a Simple JPA App using
Modern Spring Boot Approach
Get Hands-on with JPA, Hibernate
and Spring Boot

World before JPA - JDBC, Spring JDBC
Why JPA? Why Hibernate? (JPA vs
Hibernate)
Why Spring Boot and Spring Boot Data
JPA?
JPA Terminology: Entity and Mapping

Getting Started with JPA and Hibernate

63

01: Create a Spring Boot Project
with H2
02: Create COURSE table
03: Use Spring JDBC to play with
COURSE table
04: Use JPA and Hibernate to play
with COURSE table
05: Use Spring Data JPA to play
with COURSE table

Learning JPA and Hibernate - Approach

64

We added Data JPA and H2 dependencies:
Spring Boot Auto Configuration does some magic:

Initialize JPA and Spring Data JPA frameworks
Launch an in memory database (H2)
Setup connection from App to in-memory database

Launch a few scripts at startup (example: data.sql,
schema.sql)

Remember - H2 is in memory database
Does NOT persist data
Great for learning
BUT NOT so great for production

Spring Boot Auto Configuration Magic

65

JDBC
Write a lot of SQL queries! (delete from todo where id=?)
And write a lot of Java code

Spring JDBC
Write a lot of SQL queries (delete from todo where id=?)
BUT lesser Java code

JPA
Do NOT worry about queries

Just Map Entities to Tables!

Spring Data JPA
Let's make JPA even more simple!
I will take care of everything!

JDBC to Spring JDBC to JPA to Spring Data JPA

66

JDBC to Spring JDBC
JDBC example

Spring JDBC example

public void deleteTodo(int id) {
 PreparedStatement st = null;
 try {
 st = db.conn.prepareStatement("delete from todo where id=?");
 st.setInt(1, id);
 st.execute();
 } catch (SQLException e) {
 logger.fatal("Query Failed : ", e);
 } finally {
 if (st != null) {
 try {st.close();}
 catch (SQLException e) {}
 }
 }
}

public void deleteTodo(int id) {
 jdbcTemplate.update("delete from todo where id=?", id);
}

67

JPA Example

Spring Data JPA Example

@Repository
public class PersonJpaRepository {

 @PersistenceContext
 EntityManager entityManager;

 public Person findById(int id) {
 return entityManager.find(Person.class, id);
 }

 public Person update(Person person) {
 return entityManager.merge(person);
 }

 public Person insert(Person person) {
 return entityManager.merge(person);
 }

 public void deleteById(int id) {........

public interface TodoRepository extends JpaRepository<Todo, Integer>{

68

JPA defines the specification. It is an API.
How do you define entities?
How do you map attributes?
Who manages the entities?

Hibernate is one of the popular
implementations of JPA
Using Hibernate directly would result in a
lock in to Hibernate

There are other JPA implementations (Toplink, for
example)

Hibernate vs JPA

69

Web Application
with Spring Boot

70

Building Your First Web Application can
be complex:

Web App concepts (Browser, HTML, CSS, Request,
Response, Form, Session, Authentication)
Spring MVC (Dispatcher Servlet, View Resolvers,
Model, View, Controller, Validations ..)
Spring Boot (Starters, Auto Configuration, ..)
Frameworks/Tools (JSP, JSTL, JPA, Bootstrap,
Spring Security, MySQL, H2)

Goal: Build Todo Management Web App
with a Modern Spring Boot Approach

AND explore all concepts in a HANDS-ON way

Building Your First Web Application

71

My favorite place on the internet
Easiest way to create Spring Boot
Projects
Remember:

1: SpringBoot: Use latest released version
Avoid M1,M2,M3, SNAPSHOT!

2: Java: Use latest Version
Java uses 6 month release patterns
Spring Boot 3.0+ works on Java 17+

3: Use latest Eclipse Java EE IDE version

Spring Initializr

72

Understanding Logging

Knowing what to log is an essential skill to be a great
programmer
Spring Boot makes logging easy
spring-boot-starter-logging

Default: Logback with SLF4j
Typical Log Levels: ERROR, WARN, INFO, DEBUG, or TRACE

logging.level.some.path=debug
logging.level.some.other.path=error
logging.file.name=logfile.log

private Logger logger = LoggerFactory.getLogger(this.getClass());
logger.info("postConstruct");

73

All requests from browser are handled by our
web application deployed on a server
Request Scope: Active for a single request
ONLY

Once the response is sent back, the request attributes
will be removed from memory
These cannot be used for future requests

Recommended for most use cases

Session Scope: Details stored across multiple
requests

Be careful about what you store in session (Takes
additional memory as all details are stored on server)

Session vs Request Scopes

74

A: Browser sends a request
HttpRequest

B: Server handles the request
Your Spring Boot Web Application

C: Server returns the response
HttpResponse

How does Web work?

75

ALL CODE in Views (JSPs, ...)
View logic
Flow logic
Queries to databases

Disadvantages:
VERY complex JSPs
ZERO separation of concerns
Difficult to maintain

Peek into History - Model 1 Arch.

76

How about separating concerns?
Model: Data to generate the view
View: Show information to user
Controller: Controls the flow

Advantage: Simpler to maintain
Concern:

Where to implement common features
to all controllers?

Peek into History - Model 2 Arch.

77

Concept: All requests flow into
a central controller

Called as Front Controller

Front Controller controls flow
to Controller's and View's

Common features can be
implemented in the Front Controller

Model 2 Architecture - Front Controller

78

A: Receives HTTP Request
B: Processes HTTP Request

B1: Identifies correct Controller method
Based on request URL

B2: Executes Controller method
Returns Model and View Name

B3: Identifies correct View
Using ViewResolver

B4: Executes view

C: Returns HTTP Response

Spring MVC Front Controller - Dispatcher Servlet

79

1: Spring Boot Starter Validation
pom.xml

2: Command Bean (Form Backing Object)
2-way binding (todo.jsp & TodoController.java)

3: Add Validations to Bean
Todo.java

4: Display Validation Errors in the View
todo.jsp

Validations with Spring Boot

80

HTML: Hyper Text Markup Language
Tags like html, head, body, table, link are part of HTML

CSS: Cascading Style Sheets
Styling of your web page is done using CSS
We used Bootstrap CSS framework

JavaScript: Do actions on a web page
Example: Display a Date Popup (Bootstrap Datepicker)

JSTL: Display dynamic data from model
<c:forEach items="${todos}" var="todo">

Spring form tag library: Data binding-aware tags for
handling form elements

<form:form method="post"

Quick Review : Web App with Spring Boot

81

DispatcherServlet: All requests flow into a central
controller (Front Controller)

View: Show information to user
Controller: Controls the flow
Model: Data to generate the view

Spring Boot Starters: Fast track building apps
Spring Boot Starter Web
Spring Boot Starter Validation
Spring Boot Starter Security
Spring Boot Starter Data JPA

Quick Review : Web App with Spring Boot

82

Building REST API
with Spring Boot

83

WHY Spring Boot?
You can build REST API WITHOUT Spring Boot
What is the need for Spring Boot?

HOW to build a great REST API?
Identifying Resources (/users, /users/{id}/posts)
Identifying Actions (GET, POST, PUT, DELETE, ...)
Defining Request and Response structures
Using appropriate Response Status (200, 404, 500, ..)
Understanding REST API Best Practices

Thinking from the perspective of your consumer
Validation, Internationalization - i18n, Exception Handling, HATEOAS,
Versioning, Documentation, Content Negotiation and a lot more!

Building REST API with Spring Boot - Goals

84

1: Build 3 Simple Hello World REST API
Understand the magic of Spring Boot
Understand fundamentals of building REST API with Spring Boot

@RestController, @RequestMapping, @PathVariable, JSON conversion

2: Build a REST API for a Social Media Application
Design and Build a Great REST API

Choosing the right URI for resources (/users, /users/{id}, /users/{id}/posts)

Choosing the right request method for actions (GET, POST, PUT, DELETE, ..)

Designing Request and Response structures

Implementing Security, Validation and Exception Handling

Build Advanced REST API Features
Internationalization, HATEOAS, Versioning, Documentation, Content Negotiation, ...

3: Connect your REST API to a Database
Fundamentals of JPA and Hibernate
Use H2 and MySQL as databases

Building REST API with Spring Boot - Approach

85

Let's explore some Spring Boot Magic: Enable Debug Logging
WARNING: Log change frequently!

1: How are our requests handled?
DispatcherServlet - Front Controller Pattern

Mapping servlets: dispatcherServlet urls=[/]
Auto Configuration (DispatcherServletAutoConfiguration)

2: How does HelloWorldBean object get converted to JSON?
@ResponseBody + JacksonHttpMessageConverters

Auto Configuration (JacksonHttpMessageConvertersConfiguration)

3: Who is configuring error mapping?
Auto Configuration (ErrorMvcAutoConfiguration)

4: How are all jars available(Spring, Spring MVC, Jackson, Tomcat)?
Starter Projects - Spring Boot Starter Web (spring-webmvc, spring-web, spring-
boot-starter-tomcat, spring-boot-starter-json)

What's Happening in the Background?

86

Build a REST API for a
Social Media Application
Key Resources:

Users
Posts

Key Details:
User: id, name, birthDate
Post: id, description

Social Media Application REST API

87

GET - Retrieve details of a resource
POST - Create a new resource
PUT - Update an existing resource
PATCH - Update part of a resource
DELETE - Delete a resource

Request Methods for REST API

88

Users REST API
Retrieve all Users

GET /users

Create a User
POST /users

Retrieve one User
GET /users/{id} -> /users/1

Delete a User
DELETE /users/{id} -> /users/1

Posts REST API
Retrieve all posts for a User

GET /users/{id}/posts

Create a post for a User
POST /users/{id}/posts

Retrieve details of a post
GET /users/{id}/posts/{post_id}

Social Media Application - Resources & Methods

89

Return the correct response status
Resource is not found => 404
Server exception => 500
Validation error => 400

Important Response Statuses
200 — Success
201 — Created
204 — No Content
401 — Unauthorized (when authorization fails)
400 — Bad Request (such as validation error)
404 — Resource Not Found
500 — Server Error

Response Status for REST API

90

Documentation
Content Negotiation
Internationalization - i18n
Versioning
HATEOAS
Static Filtering
Dynamic Filtering
Monitoring
....

Advanced REST API Features

91

Your REST API consumers need to understand your
REST API:

Resources
Actions

Request/Response Structure (Constraints/Validations)

Challenges:
Accuracy: How do you ensure that your documentation is upto
date and correct?

Consistency: You might have 100s of REST API in an enterprise.
How do you ensure consistency?

Options:
1: Manually Maintain Documentation

Additional effort to keep it in sync with code

2: Generate from code

REST API Documentation

92

Quick overview:
2011: Swagger Specification and
Swagger Tools were introduced

2016: Open API Specification
created based on Swagger Spec.

Swagger Tools (ex:Swagger UI)
continue to exist

OpenAPI Specification: Standard,
language-agnostic interface

Discover and understand REST API

Earlier called Swagger Specification

Swagger UI: Visualize and interact
with your REST API

Can be generated from your OpenAPI
Specification

REST API Documentation - Swagger and Open API

93

Same Resource - Same URI
HOWEVER Different Representations are possible

Example: Different Content Type - XML or JSON or ..
Example: Different Language - English or Dutch or ..

How can a consumer tell the REST API provider
what they want?

Content Negotiation

Example: Accept header (MIME types -
application/xml, application/json, ..)
Example: Accept-Language header (en, nl, fr, ..)

Content Negotiation

94

Your REST API might have consumers from
around the world
How do you customize it to users around the
world?

Internationalization - i18n

Typically HTTP Request Header - Accept-
Language is used

Accept-Language - indicates natural language and
locale that the consumer prefers
Example: en - English (Good Morning)
Example: nl - Dutch (Goedemorgen)

Example: fr - French (Bonjour)

Internationalization - i18n

95

You have built an amazing REST API
You have 100s of consumers
You need to implement a breaking change

Example: Split name into firstName and lastName

SOLUTION: Versioning REST API
Variety of options

URL
Request Parameter
Header
Media Type

No Clear Winner!

Versioning REST API

96

URI Versioning - Twitter

Request Parameter versioning - Amazon

(Custom) headers versioning - Microso�
SAME-URL headers=[X-API-VERSION=1]

SAME-URL headers=[X-API-VERSION=2]

Media type versioning (a.k.a “content negotiation” or “accept
header”) - GitHub

SAME-URL produces=application/vnd.company.app-v1+json
SAME-URL produces=application/vnd.company.app-v2+json

Versioning REST API - Options

http://localhost:8080/v1/person

http://localhost:8080/v2/person

http://localhost:8080/person?version=1

http://localhost:8080/person?version=2

97

http://localhost:8080/v1/person
http://localhost:8080/v2/person
http://localhost:8080/person?version=1
http://localhost:8080/person?version=2

Factors to consider
URI Pollution
Misuse of HTTP Headers
Caching
Can we execute the request on the browser?
API Documentation
Summary: No Perfect Solution

My Recommendations
Think about versioning even before you need it!
One Enterprise - One Versioning Approach

Versioning REST API - Factors

98

Hypermedia as the Engine of Application State
(HATEOAS)
Websites allow you to:

See Data AND Perform Actions (using links)

How about enhancing your REST API to tell consumers
how to perform subsequent actions?

HATEOAS

Implementation Options:
1: Custom Format and Implementation

Difficult to maintain

2: Use Standard Implementation
HAL (JSON Hypertext Application Language): Simple format that gives a
consistent and easy way to hyperlink between resources in your API

Spring HATEOAS: Generate HAL responses with hyperlinks to resources

HATEOAS

99

Serialization: Convert object to stream (example: JSON)
Most popular JSON Serialization in Java: Jackson

How about customizing the REST API response returned by
Jackson framework?
1: Customize field names in response

@JSONProperty

2: Return only selected fields
Filtering
Example: Filter out Passwords

Two types:
Static Filtering: Same filtering for a bean across different REST API

@JsonIgnoreProperties, @JsonIgnore

Dynamic Filtering: Customize filtering for a bean for specific REST API
@JsonFilter with FilterProvider

Customizing REST API Responses - Filtering and more..

100

Spring Boot Actuator: Provides Spring Boot’s
production-ready features

Monitor and manage your application in your production

Spring Boot Starter Actuator: Starter to add Spring Boot
Actuator to your application

spring-boot-starter-actuator

Provides a number of endpoints:
beans - Complete list of Spring beans in your app
health - Application health information
metrics - Application metrics
mappings - Details around Request Mappings
and a lot more

Get Production-ready with Spring Boot Actuator

101

1: HAL (JSON Hypertext Application Language)
Simple format that gives a consistent and easy way to
hyperlink between resources in your API

2: HAL Explorer
An API explorer for RESTful Hypermedia APIs using HAL
Enable your non-technical teams to play with APIs

3: Spring Boot HAL Explorer
Auto-configures HAL Explorer for Spring Boot Projects
spring-data-rest-hal-explorer

Explore REST API using HAL Explorer

102

Full Stack Application
with Spring Boot and React

103

Counter Application
Understand React Fundamentals

A Full-Stack Todo Management Application
Add Todo
Delete Todo
Update Todo
Authentication (Login/Logout)
JWT

What will we build?

104

Front-end: React Framework
Modern JavaScript

Backend REST API: Spring Boot
Database

H2 > MySQL

Authentication
Spring Security (Basic > JWT)

Full Stack Architecture

105

Full Stack Architectures are complex
to build

You need to understand different languages
You need to understand a variety of
frameworks
You need to use a variety of tools

Why Full-Stack?
Because they give you flexibility and allow
reuse of REST API

OPTION: Create a Mobile App talking to REST API
OPTION: Create an IOT App talking to REST API

Why Full-Stack Architecture?

106

JavaScript evolved considerably in the last decade or so
(EARLIER JS Versions) Very difficult to write maintainable JavaScript code
Improved drastically in the last decade

JAVASCRIPT VERSIONS
ES5 - 2009

ES6 - 2015 - ES2015

ES7 - 2016 - ES2016

...

ES13 - 2022 - ES2022

ES14 - 2023 - ES2023

...

ES: ECMASCRIPT
EcmaScript is standard

JavaScript is implementation

GOOD NEWS: Writing Good JavaScript code is not so difficult :)
Do NOT worry if you are new to JavaScript

Quick Look into JavaScript History

107

React: One of the most popular JavaScript libraries
to build SPA (Single Page Applications)

Popular alternatives: Angular, VueJS

Open-source project created by Facebook
Component-Based
Mostly used to build front-end web SPA
applications

Can also be used to create native apps for Android, iOS
(React Native)

What is React?

108

Create React App: Recommended way to create a new
single-page application (SPA) using React

Compatible with macOS, Windows, and Linux
Prerequisite: Latest version of Node JS

NPM - package manager: Install, delete, and update JS packages (npm --version)

NPX - package executer: Execute JS packages directly, without installing

Let's get started:
DO NOT WORRY:Troubleshooting instructions at the end of the video!

cd YOUR_FOLDER
npx create-react-app todo-app
cd todo-app
npm start

Creating React App with Create React App

109

Windows: Launch command prompt as
administrator
Mac or Linux: Use sudo

sudo npx create-react-app todo-app
Other things you can try:

npm uninstall -g create-react-app
npx clear-npx-cache

Complete troubleshooting guide:
Google for "create react app troubleshooting"

Troubleshooting

110

npm start: Runs the app in development mode
Recommendation: Use Google Chrome

npm test: Run unit tests
npm run build: Build a production deployable unit

Minified
Optimized for performance

npm install --save react-router-dom: Add a
dependency to your project

Important Commands

111

Toggle Explorer
Ctrl + B or Cmd + B

Explore Le� Hand Side Bar
Search etc

Make a change to index.html
Change Title

Make a change to App.js
Remove everything in App div

Add My Todo Application

How is the magic happening?
Create React App
Automatically builds and renders in the browser

Visual Studio Code - Tips

112

Goal: Get a 10,000 feet overview of folder structure
README.md: Documentation

package.json: Define dependencies (similar to Maven pom.xml)

node_modules: Folder where all the dependencies are downloaded to
React Initialization

public/index.html: Contains root div

src/index.js: Initializes React App. Loads App component.
src/index.css - Styling for entire application

src/App.js: Code for App component
src/App.css - Styling for App component

src/App.test.js - Unit tests for App component
Unit test is right along side production code (Different to Java approach)

Remember: Syntax might look little complex
Different from typical Java code (imports, ...)

We will focus on it a little later

Exploring Create React App Folder Structure

113

Web applications have complex structure
Menu, Header, Footer, Welcome Page, Login Page, Logout
Page, Todo Page etc

Components help you modularize React apps
Create separate components for each page element

Menu Component

Header Component

Footer Component

..

Why?
Modularization

Reuse

Why do we need React Components?

114

First component typically loaded in React
Apps: App Component
Parts of a Component

View (JSX or JavaScript)
Logic (JavaScript)
Styling (CSS)

State (Internal Data Store)
Props (Pass Data)

(Remember) React component names must
always start with a capital letter

Understanding React Components

115

Creating a React Component

For now, we will keep things simple:
We will write all code in one module

First Component

Exercise: Second Component

Third Component as Class Component

Exercise: Fourth Component

function FirstComponent() {
 return (
 <div className="FirstComponent">FirstComponent</div>
);
}

class ThirdComponent extends Component {
 render() {
 return (
 <div className="ThirdComponent">ThirdComponent</div>
);
 }
}

116

React projects use JSX for presentation
Stricter than HTML

Close tags are mandatory
Only one top-level tag allowed:

Cannot return multiple top-level JSX tags

Wrap into a shared parent
<div>...</div> or <>...</> (empty wrapper)

How is JSX enabled in a React project?
Different browsers have different support levels modern JS features
(ES2015,..,ES2022,..)

How to ensure backward compatibility for your JS code?

Solution: Babel

Babel also converts JSX to JS

Getting Started with JSX - Views with React

117

Let's try Babel:
How does JSX get converted to JS?

Example 1: <h1 className="something" attr="10">heading</h1>
Example 2: <Parent attr="1"><Child><AnotherChild></AnotherChild></Child>
</Parent>

Following are examples of ERRORs
<h1></h1><h2></h2>

SOLUTION: wrap with <div>...</div> or <>...</> (empty wrapper)

Close tags are mandatory

Let's try JSX in our components
Parentheses () make returning complex JSX values easier

Custom Components should start with upper case letter
For HTML you should use small case

Specify CSS class - className
Similar to HTML class attribute

Let's Play with Babel and JSX
https://babeljs.io/repl

118

https://babeljs.io/repl

1: Each component in its own file (or module)
src\components\learning-examples\FirstComponent.jsx
Exercise: Move SecondComponent, ThirdComponent & FourthComponent
to their own modules
To use a class from a different module, you need to import it

Default import
import FirstComponent from './components/learning/FirstComponent.jsx';

Named import
import { Fi�hComponent } from './components/learning/FirstComponent.jsx';

2: Exercise: Create LearningComponent and move all code in
App component to it!

Let's follow JavaScript Best Practices

119

Quick JavaScript Tour For Java Developers

No need to use semicolon!
Dynamic objects
You can store a function in an object!

const person = {
 name: 'Ranga Karanam',
 address: {
 line1: 'Baker Street',
 city: 'London',
 country: 'UK',
 },
 profiles: ['twitter', 'linkedin', 'instagram'],
 printProfile: () => {
 person.profiles.map(
 profile => console.log(profile)
)
 }
}

120

Parts of a Component
View (JSX or JavaScript)
Logic (JavaScript)
Styling (CSS)
State (Internal Data Store)
Props (Pass Data)

Let's learn more about each of these building
another simple example

A Counter App

Let's take a hands-on step by step approach

Digging Deeper into Components - Counter

121

Define CSS in JSX

Options of styling your React components
1: style

Error: <button style={border-radius:30px}>
Correct Syntax: <button style={{borderRadius:"30px"}>

2: className
Define the cssClass in your component CSS file

const customStyle = {
 backgroundColor: "green",
 fontSize: "16px",
 padding: "15px 30px",
 color: "white",
 width: "100px",
 border: "1px solid #666666",
 borderRadius: "30px",
};

<button style={customStyle}>+1</button>

<button className="cssClass">+1</button>

122

State: Built-in React object used to contain data or
information about the component
(REMEMBER) In earlier versions of React, ONLY Class
Components can have state

AND implementing state was very complex!

Hooks were introduced in React 16.8
Hooks are very easy to use
useState hook allows adding state to Function Components

useState returns two things
1: Current state

2: A function to update state

Each instance of component has it's own state

How to share state between components?
Move state “upwards” (to a parent component)

Understanding State in React

123

We updated the state => React updated the view
How can you update an HTML element?

A HTML page is represented by DOM (Document Object Model)

Each element in a HTML page is a node in the DOM

You need to update the DOM to update the element

HOWEVER, writing code to update the DOM can be complex and slow!

React takes a different approach:
Virtual DOM: “virtual” representation of a UI (kept in memory)

React code updates Virtual DOM

React identifies changes and synchronizes them to HTML page
1: React creates Virtual DOM v1 on load of page

2: You perform an action
3: React creates Virtual DOM v2 as a result of your action

4: React performs a diff between v1 and v2

5: React synchronizes changes (updates HTML page)

Summary: We are NOT updating the DOM directly!
React identifies changes and efficiently updates the DOM

What's happening in the background with React?

124

1: Let's create multiple counter buttons
2: Let's have a different increment value for
each button
3: Let's have common state for all our
buttons

Enhancing Counter Example

125

Exploring React props

You can pass “props” (short for properties) object to a React Component
Used for things that remain a constant during lifetime of a component

Example increment value of a specific component

<PlayingWithProps prop1="value1" prop2="value2" />

function PlayingWithProps({ prop1, prop2 }) {
 return (<>{prop1} {prop2}</>)
}

function CounterButton({ incrementBy}) {...}

<CounterButton incrementBy={2}>

Counter.defaultProps = {
 incrementBy: 1,
};

Counter.propTypes = {
 incrementBy: PropTypes.number,
};

126

How can we have one state for all counters?
1: Rename Counter to CounterButton
2: Calling a parent component method

<CounterButton incrementMethod={increment}>

3: Exercise: CounterButton as separate module
4: Exercise: Adding Reset Button

5: Remove State From Child
6: Directly Call Parent Methods

Moving State Up and More...

127

Chrome Developer Tools extension for React
Goal: Inspect React Component Hierarchies
Components tab shows:

Root React components
Sub components that were rendered

For each component, you can see and edit
props

state

Useful for:
Understanding and Learning React
Debugging problems

React Developer Tools - Chrome Extension

128

1: Counter example - What did we learn?
Basics of Components

View (JSX)

Styling (CSS)

State

Props

2: Todo Management App - What will we learn?
Routing
Forms

Validation
REST API calls

Authentication
& a lot more...

Todo Management React App - First Steps

129

Starting with your TodoApp
1: LoginComponent

Make LoginComponent Controlled
Link form fields with state

Implement Hard-coded Authentication

Implement Conditional Rendering

2: WelcomeComponent
Implement Routing

3: ErrorComponent
4: ListTodosComponent
5: Add Bootstrap & style our pages

6: HeaderComponent
7: FooterComponent

8: LogoutComponent

Getting Started with Todo App - Components

130

REST API
Hello World REST API:

Hello World:
@GetMapping(path = "/hello-world")

Hello World Bean:
@GetMapping(path = "/hello-world-bean")

Hello World Path Variable:
@GetMapping(path = "/hello-world/path-variable/{name}")

Todo REST API:
Retrieve Todos

@GetMapping("/users/{username}/todos")

Retrieve Todo
@GetMapping("/users/{username}/todos/{id}")

Delete Todo
@DeleteMapping("/users/{username}/todos/{id}")

Update Todo
@PutMapping("/users/{username}/todos/{id}")

Create Todo
@PostMapping("/users/{username}/todos")

Full Stack - Todo REST API - Resources and Methods

131

Basic Authentication
No Expiration Time
No User Details

Easily Decoded

How about a custom token system?
Custom Structure
Possible Security Flaws

Service Provider & Service Consumer should
understand

JWT (Json Web Token)
Open, industry standard for representing
claims securely between two parties
Can Contain User Details and Authorizations

Getting Started with JWT

132

Header
Type: JWT
Hashing Algorithm: HS512

Payload
Standard Attributes

iss: The issuer

sub: The subject

aud: The audience

exp: When does token expire?

iat: When was token issued?

Custom Attributes
youratt1: Your custom attribute 1

Signature
Includes a Secret

What does a JWT contain?

133

JWT Flow

Copy code for now
We will understand the code in the Spring Security section

Send POST to
Get the TOKEN_VALUE from response

Use token in authorization header for future API calls:
Authorization : "Bearer TOKEN_VALUE"

Request
{
 "username":"in28minutes",
 "password":"dummy"
}

Response
{
"token": "TOKEN_VALUE"
}

http://localhost:8080/authenticate

134

http://localhost:8080/authenticate

Spring Security

135

In any system:
You have resources

A REST API, A Web Application, A Database, A resource in the cloud, ...

You have identities
Identities need to access to resources and perform actions

For example: Execute a REST API call, Read/modify data in a database

Key Questions:
How to identify users?

How to configure resources they can access & actions that are allowed?

Authentication (is it the right user?)
UserId/password (What do you remember?)
Biometrics (What do you possess?)

Authorization (do they have the right access?)
User XYZ can only read data

User ABC can read and update data

Understanding Security Fundamentals

136

A chain is only as strong as its WEAKEST link
Small security flaw makes an app with robust architecture vulnerable

6 Principles Of Building Secure Systems
1: Trust Nothing

Validate every request

Validate piece of data or information that comes into the system

2: Assign Least Privileges
Start the design of the system with security requirements in mind

Have a clear picture of the user roles and accesses

Assign Minimum Possible Privileges at all levels
Application

Infrastructure (database + server + ..)

3: Have Complete Mediation
How were Medieval Fort's protected?

Everyone had to pass through one main gate

Apply a well-implemented security filter. Test the role and access of each user.

Understanding Important Security Principles

137

4: Have Defense In Depth
Multiple levels of security

Transport, Network, Infrastructure

Operating System, Application, ..

5: Have Economy Of Mechanism
Security architecture should be simple

Simple systems are easier to protect

6: Ensure Openness Of Design
Easier to identify and fix security flaws
Opposite of the misplaced idea of "Security Through
Obscurity"

Understanding Important Security Principles

138

Security is the NO 1 priority for enterprises today!
What is the most popular security project in the
Spring eco-system?

Spring Security: Protect your web applications, REST API and
microservices
Spring Security can be difficult to get started

Filter Chain

Authentication managers

Authentication providers

...

BUT it provides a very flexible security system!
By default, everything is protected!

A chain of filters ensure proper authentication and authorization

Getting Started with Spring Security

139

How does Spring MVC Work?

DispatcherServlet acts as the front controller
Intercepts all requests
Routes to the Right Controller

140

How does Spring Security Work?

Spring security intercepts all requests
Follows following security principle

3: Have Complete Mediation

Spring security executes a series of filters
Also called Spring Security Filter Chain

141

Spring Security executes a series of filters
Filters provide these features:

Authentication: Is it a valid user? (Ex: BasicAuthenticationFilter)

Authorization: Does the user have right access?(Ex: AuthorizationFilter)

Other Features:
Cross-Origin Resource Sharing (CORS) - CorsFilter

Should you allow AJAX calls from other domains?

Cross Site Request Forgery (CSRF) - CsrfFilter
A malicious website making use of previous authentication on your website

Default: CSRF protection enabled for update requests - POST, PUT etc..

Login Page, Logout Page
LogoutFilter, DefaultLoginPageGeneratingFilter, DefaultLogoutPageGeneratingFilter

Translating exceptions into proper Http Responses (ExceptionTranslationFilter)

Order of filters is important (typical order shown below)
1: Basic Check Filters - CORS, CSRF, ..

2: Authentication Filters

3: Authorization Filters

How does Spring Security Work? (2)

142

Everything is authenticated
You can customize it further

Form authentication is enabled (with default form
and logout features)
Basic authentication is enabled
Test user is created

Credentials printed in log (Username is user)

CSRF protection is enabled
CORS requests are denied
X-Frame-Options is set to 0 (Frames are disabled)
And a lot of others...

Default Spring Security Configuration

143

Used by most web applications
Uses a Session Cookie

JSESSIONID: E2E693A57F6F7E4AC112A1BF4D40890A

Spring security enables form based authentication by
default
Provides a default Login Page
Provides a default Logout Page
Provides a /logout URL
You can add a change password page

(http.passwordManagement
(Customizer.withDefaults()))

Exploring Form Based Authentication

144

Most basic option for Securing REST API
BUT has many flaws
NOT recommended for production use

Base 64 encoded username and password is
sent as request header

Authorization: Basic
aW4yOG1pbnV0ZXM6ZHVtbXk=
(DISADVANTAGE) Easy Decoding

Basic Auth Authorization Header:
Does NOT contain authorization information (user
access, roles,..)
Does NOT have Expiry Date

Exploring Basic Authentication

145

1: You are logged-in to your bank website
A cookie Cookie-A is saved in the your web browser

2: You go to a malicious website without logging out
3: Malicious website executes a bank transfer without
your knowledge using Cookie-A
How can you protect from CSRF?

1: Synchronizer token pattern
A token created for each request

To make an update (POST, PUT, ..), you need a CSRF token from the previous
request

2: SameSite cookie (Set-Cookie: SameSite=Strict)
application.properties

server.servlet.session.cookie.same-site=strict

Depends on browser support

Getting started with Cross-Site Request Forgery (CSRF)

146

Getting Started with CORS

Browsers do NOT allow AJAX calls to resources outside current origin
Cross-Origin Resource Sharing (CORS): Specification that allows you to
configure which cross-domain requests are allowed

Global Configuration
Configure addCorsMappings callback method in WebMvcConfigurer

Local Configuration
@CrossOrigin - Allow from all origins

@CrossOrigin(origins = "https://www.in28minutes.com") - Allow from specific origin

@Bean
public WebMvcConfigurer corsConfigurer() {
 return new WebMvcConfigurer() {
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/**")
 .allowedMethods("*")
 .allowedOrigins("http://localhost:3000");
 }
 };
}

147

Storing User Credentials

User credentials can be stored in:
In Memory - For test purposes. Not recommended for production.

Database - You can use JDBC/JPA to access the credentials.
LDAP - Lightweight Directory Access Protocol

Open protocol for directory services and authentication

@Bean
public UserDetailsService userDetailsService(DataSource dataSource) {
 UserDetails user = User.builder()
 .username("in28minutes")
 //.password("{noop}dummy")
 .password("dummy")
 .roles("USER")
 .passwordEncoder(str -> passwordEncoder().encode(str))
 .build();
 JdbcUserDetailsManager users = new JdbcUserDetailsManager(dataSource);
 users.createUser(user);
 return users;
 //return new InMemoryUserDetailsManager(user);
}

148

Encoding: Transform data - one form to another
Does NOT use a key or password
Is reversible

Typically NOT used for securing data

Usecases: Compression, Streaming
Example: Base 64, Wav, MP3

Hashing: Convert data into a Hash (a String)
One-way process

NOT reversible
You CANNOT get the original data back!

Usecases: Validate integrity of data
Example: bcrypt, scrypt

Encryption: Encoding data using a key or password
You need to key or password to decrypt

Example: RSA

Encoding vs Hashing vs Encryption

https://upload.wikimedia.org/wikipedia/commons/5/5e/CPT-

Hashing-Password-Login.svg

149

https://upload.wikimedia.org/wikipedia/commons/5/5e/CPT-Hashing-Password-Login.svg
https://upload.wikimedia.org/wikipedia/commons/5/5e/CPT-Hashing-Password-Login.svg

Hashes like SHA-256 are no longer secure
Modern systems can perform billions of hash calculations a
second

AND systems improve with time!

Recommended: Use adaptive one way functions with Work
factor of 1 second

It should take at least 1 second to verify a password on your system
Examples: bcrypt, scrypt, argon2, ..

PasswordEncoder - interface for performing one way
transformation of a password

(REMEMBER) Confusingly Named!
BCryptPasswordEncoder

Spring Security - Storing Passwords

150

Basic Authentication
No Expiration Time
No User Details

Easily Decoded

How about a custom token system?
Custom Structure
Possible Security Flaws

Service Provider & Service Consumer should
understand

JWT (Json Web Token)
Open, industry standard for representing
claims securely between two parties
Can Contain User Details and Authorizations

Getting Started with JWT

151

Header
Type: JWT
Hashing Algorithm: HS512

Payload
Standard Attributes

iss: The issuer

sub: The subject

aud: The audience

exp: When does token expire?

iat: When was token issued?

Custom Attributes
youratt1: Your custom attribute 1

Signature
Includes a Secret

What does a JWT contain?

152

Symmetric Key Encryption

Symmetric encryption algorithms use the same key for encryption and
decryption
Key Factor 1: Choose the right encryption algorithm
Key Factor 2: How do we secure the encryption key?
Key Factor 3: How do we share the encryption key?

153

Two Keys : Public Key and Private Key
Also called Public Key Cyptography
Encrypt data with Public Key and
decrypt with Private Key
Share Public Key with everybody and
keep the Private Key with you(YEAH,
ITS PRIVATE!)
No crazy questions:

Will somebody not figure out private key
using the public key?

Best Practice: Use Asymmetric Keys

Asymmetric Key Encryption

https://commons.wikimedia.org/wiki/File:Asymmetric_encryption_(colored).p

154

https://commons.wikimedia.org/wiki/File:Asymmetric_encryption_(colored).png

1: Create a JWT
Needs Encoding

1: User credentials

2: User data (payload)

3: RSA key pair

We will create a JWT Resource for creating JWT later

2: Send JWT as part of request header
Authorization Header

Bearer Token

Authorization: Bearer ${JWT_TOKEN}

3: JWT is verified
Needs Decoding
RSA key pair (Public Key)

Understanding High Level JWT Flow

155

JWT Authentication using Spring Boot’s OAuth2
Resource Server

1: Create Key Pair
We will use java.security.KeyPairGenerator
You can use openssl as well

2: Create RSA Key object using Key Pair
com.nimbusds.jose.jwk.RSAKey

3: Create JWKSource (JSON Web Key source)
Create JWKSet (a new JSON Web Key set) with the RSA Key

Create JWKSource using the JWKSet

4: Use RSA Public Key for Decoding
NimbusJwtDecoder.withPublicKey(rsaKey().toRSAPublicKey()).build()

5: Use JWKSource for Encoding
return new NimbusJwtEncoder(jwkSource());
We will use this later in the JWT Resource

Getting Started with JWT Security Configuration

156

Getting Started with JWT Resource

Step 1: Use Basic Auth for getting the JWT Token
Step 2-n: Use JWT token as Bearer Token for authenticating requests

username:"in28minutes",
password:"dummy"

Response
{
"token": "TOKEN_VALUE"
}

157

Authentication is done as part of the Spring Security Filter
Chain!
1: AuthenticationManager - Responsible for authentication

Can interact with multiple authentication providers

2: AuthenticationProvider - Perform specific authentication
type

JwtAuthenticationProvider - JWT Authentication

3: UserDetailsService - Core interface to load user data
How is authentication result stored?

SecurityContextHolder > SecurityContext > Authentication >
GrantedAuthority

Authentication - (A�er authentication) Holds user (Principal) details

GrantedAuthority - An authority granted to principal (roles, scopes,..)

Understanding Spring Security Authentication

158

1: Global Security: authorizeHttpRequests
.requestMatchers("/users").hasRole("USER")

hasRole, hasAuthority, hasAnyAuthority, isAuthenticated

2: Method Security (@EnableMethodSecurity)
@Pre and @Post Annotations

@PreAuthorize("hasRole('USER') and #username == authentication.name")

@PostAuthorize("returnObject.username == 'in28minutes'")

JSR-250 annotations
@EnableMethodSecurity(jsr250Enabled = true)

@RolesAllowed({"ADMIN", "USER"})

@Secured annotation
@EnableMethodSecurity(securedEnabled = true)

@Secured({"ADMIN", "USER"})

(REMEMBER) JWT: Use
hasAuthority('SCOPE ROLE USER')

Exploring Spring Security Authorization

159

How can you give an application access to files
present on your google drive?

You don't want to provide your credentials (NOT SECURE)

OAuth: Industry-standard protocol for authorization
Also supports authentication now!

Let's say you want to provide access to your Google
Drive files to the Todo management application!

Important Concepts:
Resource owner: You (Person owning the google drive files)

Client application: Todo management application

Resource server: Contains the resources that are being accessed - Google
Drive

Authorization server: Google OAuth Server

Getting Started with OAuth

160

Spring AOP

161

A layered approach is typically used to build applications:
Web Layer - View logic for web apps OR JSON conversion for REST API
Business Layer - Business Logic

Data Layer - Persistence Logic

Each layer has different responsibilities
HOWEVER, there are a few common aspects that apply to all layers

Security

Performance

Logging

These common aspects are called Cross Cutting Concerns
Aspect Oriented Programming can be used to implement Cross Cutting
Concerns

What is Aspect Oriented Programming?

162

1: Implement the cross cutting concern as an aspect
2: Define point cuts to indicate where the aspect should be
applied
TWO Popular AOP Frameworks

Spring AOP
NOT a complete AOP solution BUT very popular

Only works with Spring Beans

Example: Intercept method calls to Spring Beans

AspectJ
Complete AOP solution BUT rarely used

Example: Intercept any method call on any Java class

Example: Intercept change of values in a field

We will be focusing on Spring AOP in this section

What is Aspect Oriented Programming? - 2

163

Compile Time
Advice - What code to execute?

Example: Logging, Authentication

Pointcut - Expression that identifies method calls to be intercepted
Example: execution(com.in28minutes.aop.data..*(..))

Aspect - A combination of
1: Advice - what to do AND

2: Pointcut - when to intercept a method call

Weaver - Weaver is the framework that implements AOP
AspectJ or Spring AOP

Runtime
Join Point - When pointcut condition is true, the advice is executed. A
specific execution instance of an advice is called a Join Point.

Aspect Oriented Programming - Important Terminology

164

@Before - Do something before a method is called
@A�er - Do something a�er a method is executed irrespective
of whether:

1: Method executes successfully OR
2: Method throws an exception

@A�erReturning - Do something ONLY when a method
executes successfully
@A�erThrowing - Do something ONLY when a method throws
an exception
@Around - Do something before and a�er a method execution

Do something AROUND a method execution

Aspect Oriented Programming - Important Annotations

165

Maven

166

Things you do when writing code each day:
Create new projects
Manages dependencies and their versions

Spring, Spring MVC, Hibernate,...
Add/modify dependencies

Build a JAR file
Run your application locally in Tomcat or Jetty or ..
Run unit tests
Deploy to a test environment
and a lot more..

Maven helps you do all these and more...

What is Maven?

167

Let's explore Project Object Model - pom.xml
1: Maven dependencies: Frameworks & libraries used in a project

Ex: spring-boot-starter-web and spring-boot-starter-test
Why are there so many dependencies in the classpath?

Answer: Transitive Dependencies

(REMEMBER) Spring dependencies are DIFFERENT

2: Parent Pom: spring-boot-starter-parent
Dependency Management: spring-boot-dependencies
Properties: java.version, plugins and configurations

3: Name of our project: groupId + artifactId
1: groupId: Similar to package name

2: artifactId: Similar to class name

Why is it important?
Think about this: How can other projects use our new project?

Activity: help:effective-pom, dependency:tree & Eclipse UI
Let's add a new dependency: spring-boot-starter-web

Exploring Project Object Model - pom.xml

168

When we run a maven command, maven build life
cycle is used
Build LifeCycle is a sequence of steps

Validate
Compile
Test

Package
Integration Test

Verify
Install

Deploy

Exploring Maven Build Life Cycle

169

Maven follows Convention over Configuration
Pre defined folder structure
Almost all Java projects follow Maven structure (Consistency)

Maven central repository contains jars (and others) indexed
by artifact id and group id

Stores all the versions of dependencies

repositories > repository
pluginRepositories > pluginRepository

When a dependency is added to pom.xml, Maven tries to
download the dependency

Downloaded dependencies are stored inside your maven local repository

Local Repository : a temp folder on your machine where maven stores the
jar and dependency files that are downloaded from Maven Repository.

How does Maven Work?

170

mvn --version
mvn compile: Compile source files
mvn test-compile: Compile test files

OBSERVCE CAREFULLY: This will also compile source files

mvn clean: Delete target directory
mvn test: Run unit tests
mvn package: Create a jar
mvn help:effective-pom
mvn dependency:tree

Important Maven Commands

171

Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven

Example: Create executable jar package
Example: Run Spring Boot application
Example: Create a Container Image
Commands:

mvn spring-boot:repackage (create jar or war)
Run package using java -jar

mvn spring-boot:run (Run application)

mvn spring-boot:start (Non-blocking. Use it to run integration tests.)

mvn spring-boot:stop (Stop application started with start command)

mvn spring-boot:build-image (Build a container image)

Spring Boot Maven Plugin

172

Version scheme - MAJOR.MINOR.PATCH[-MODIFIER]
MAJOR: Significant amount of work to upgrade (10.0.0 to 11.0.0)
MINOR: Little to no work to upgrade (10.1.0 to 10.2.0)

PATCH: No work to upgrade (10.5.4 to 10.5.5)
MODIFIER: Optional modifier

Milestones - M1, M2, .. (10.3.0-M1,10.3.0-M2)

Release candidates - RC1, RC2, .. (10.3.0-RC1, 10.3.0-RC2)

Snapshots - SNAPSHOT

Release - Modifier will be ABSENT (10.0.0, 10.1.0)

Example versions in order:
10.0.0-SNAPSHOT, 10.0.0-M1, 10.0.0-M2, 10.0.0-RC1, 10.0.0-RC2, 10.0.0, ...

MY RECOMMENDATIONS:
Avoid SNAPSHOTs

Use ONLY Released versions in PRODUCTION

How are Spring Releases Versioned?

173

Gradle

174

Goal: Build, automate and deliver better so�ware, faster
Build Anything: Cross-Platform Tool

Java, C/C++, JavaScript, Python, ...

Automate Everything: Completely Programmable
Complete flexibility

Uses a DSL
Supports Groovy and Kotlin

Deliver Faster: Blazing-fast builds
Compile avoidance to advanced caching

Can speed up Maven builds by up to 90%
Incrementality — Gradle runs only what is necessary

Example: Compiles only changed files

Build Cache — Reuses the build outputs of other Gradle builds with the same inputs

Same project layout as Maven
IDE support still evolving

Gradle

175

Top 3 Java Plugins for Gradle:
1: Java Plugin: Java compilation + testing + bundling capabilities

Default Layout
src/main/java: Production Java source

src/main/resources: Production resources, such as XML and properties files

src/test/java: Test Java source

src/test/resources: Test resources

Key Task: build

2: Dependency Management: Maven-like dependency management
group:'org.springframework', name:'spring-core',
version:'10.0.3.RELEASE' OR

Shortcut: org.springframework:spring-core:10.0.3.RELEASE

3: Spring Boot Gradle Plugin: Spring Boot support in Gradle
Package executable Spring Boot jar, Container Image (bootJar, bootBuildImage)

Use dependency management enabled by spring-boot-dependencies
No need to specify dependency version

Ex: implementation('org.springframework.boot:spring-boot-starter')

Gradle Plugins

176

Let's start with a few popular examples:
Spring Framework - Using Gradle since 2012 (Spring Framework v3.2.0)
Spring Boot - Using Gradle since 2020 (Spring Boot v2.3.0)

Spring Cloud - Continues to use Maven even today
Last update: Spring Cloud has no plans to switch

Top Maven Advantages: Familiar, Simple and Restrictive
Top Gradle Advantages: Faster build times and less verbose
What Do I Recommend: I'm sitting on the fence for now

Choose whatever tool best meets your projects needs
If your builds are taking really long, go with Gradle
If your builds are simple, stick with Maven

Maven vs Gradle - Which one to Use?

177

Docker
Getting Started

178

Deployment process described in a document
Operations team follows steps to:

Setup Hardware
Setup OS (Linux, Windows, Mac, ...)
Install So�ware (Java, Python, NodeJs, ...)
Setup Application Dependencies
Install Application

Manual approach:
Takes a lot of time
High chance of making mistakes

How does Traditional Deployment work?

179

Simplified Deployment Process:
OS doesn't matter
Programming Language does not matter
Hardware does not matter

01: Developer creates a Docker Image
02: Operations run the Docker Image

Using a very simple command

Takeaway: Once you have a Docker Image, irrespective
of what the docker image contains, you run it the same
way!

Make your operations team happy

Understanding Deployment Process with Docker

180

Docker image has everything you need to run your
application:

Operating System
Application Runtime (JDK or Python or NodeJS)
Application code and dependencies

You can run a Docker container the same way
everywhere:

Your local machine
Corporate data center
Cloud

How does Docker Make it Easy?

181

Run Docker Containers Anywhere

All that you need is a Docker Runtime (like Docker Engine)

182

Why is Docker Popular?

183

What's happening in the Background?

Docker image is downloaded from Docker Registry (Default: Docker Hub)

Image is a set of bytes

Container: Running Image
in28min/hello-world-nodejs: Repository Name
0.0.1.RELEASE: Tag (or version)

-p hostPort:containerPort: Maps internal docker port (container port) to a port on the host
(host port)

By default, Docker uses its own internal network called bridge network

We are mapping a host port so that users can access your application

-d: Detatched Mode (Don't tie up the terminal)

docker container run -d -p 5000:5000 in28min/hello-world-nodejs:0.0.1.RELEASE

https://hub.docker.com/r/in28min/hello-world-nodejs

184

https://hub.docker.com/r/in28min/hello-world-nodejs

Docker Image: A package representing specific
version of your application (or so�ware)

Contains everything your app needs
OS, so�ware, code, dependencies

Docker Registry: A place to store your docker images
Docker Hub: A registry to host Docker images
Docker Repository: Docker images for a specific app
(tags are used to differentiate different images)
Docker Container: Runtime instance of a docker
image
Dockerfile: File with instructions to create a Docker
image

Understanding Docker Terminology

185

Dockerfile - 1 - Creating Docker Images

Dockerfile contains instruction to create Docker images
FROM - Sets a base image
COPY - Copies new files or directories into image

EXPOSE - Informs Docker about the port that the container listens on at runtime
ENTRYPOINT - Configure a command that will be run at container launch

docker build -t in28min/hello-world:v1 .

FROM openjdk:18.0-slim
COPY target/*.jar app.jar
EXPOSE 5000
ENTRYPOINT ["java","-jar","/app.jar"]

186

Dockerfile - 2 - Build Jar File - Multi Stage

Let build the jar file as part of creation of Docker Image
Your build does NOT make use of anything built on your local machine

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app
COPY . /home/app
RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000
COPY --from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java -jar /app.jar"]

187

Dockerfile - 3 - Improve Layer Caching

Docker caches every layer and tries to reuse it
Let's make use of this feature to make our build efficient

FROM maven:3.8.6-openjdk-18-slim AS build
WORKDIR /home/app

COPY ./pom.xml /home/app/pom.xml
COPY ./src/main/java/com/example/demodocker/DemoDockerApplication.java /
 /home/app/src/main/java/com/example/demodocker/DemoDockerApplication.java

RUN mvn -f /home/app/pom.xml clean package

COPY . /home/app
RUN mvn -f /home/app/pom.xml clean package

FROM openjdk:18.0-slim
EXPOSE 5000
COPY --from=build /home/app/target/*.jar app.jar
ENTRYPOINT ["sh", "-c", "java -jar /app.jar"]

188

Spring Boot Maven Plugin: Provides Spring Boot
support in Apache Maven

Example: Create executable jar package
Example: Run Spring Boot application
Example: Create a Container Image
Commands:

mvn spring-boot:repackage (create jar or war)
Run package using java -jar

mvn spring-boot:run (Run application)

mvn spring-boot:start (Non-blocking. Use it to run integration tests.)

mvn spring-boot:stop (Stop application started with start command)

mvn spring-boot:build-image (Build a container image)

Spring Boot Maven Plugin - Create Docker Image

189

Creating Docker Images - Dockerfile

Dockerfile contains instruction to create Docker images
FROM - Sets a base image

WORKDIR - sets the working directory
RUN - execute a command

EXPOSE - Informs Docker about the port that the container listens on at runtime
COPY - Copies new files or directories into image

CMD - Default command for an executing container

FROM node:8.16.1-alpine
WORKDIR /app
COPY . /app
RUN npm install
EXPOSE 5000
CMD node index.js

190

Learning AWS

191

Before the Cloud - Example 1 - Online Shopping App

Challenge:
Peak usage during holidays and weekends
Less load during rest of the time

Solution (before the Cloud):
Procure (Buy) infrastructure for peak load

QUESTION: What would the infrastructure be doing during periods of low loads?

192

Before the Cloud - Example 2 - Startup

Challenge:
It suddenly becomes popular.
How to handle the sudden increase in load?

Solution (before the Cloud):
Procure (Buy) infrastructure assuming they would be successful

QUESTION: What if they are not successful?

193

Before the Cloud - Challenges

Low infrastructure utilization (PEAK LOAD provisioning)
Needs ahead of time planning (Can you guess the future?)
High cost of procuring infrastructure
Dedicated infrastructure maintenance team (Can a startup afford it?)

194

How about provisioning
(renting) resources when you
want them and releasing them
back when you do not need
them?

On-demand resource provisioning
Also called Elasticity

Silver Lining in the Cloud

195

Trade "capital expense" for "variable
expense"
Benefit from massive economies of scale
Stop guessing capacity
"Go global" in minutes
Avoid undifferentiated heavy li�ing
Stop spending money running and
maintaining data centers

Cloud - Advantages

196

Leading cloud service provider
Competitors: Microso� Azure and Google Cloud

Provides MOST (200+) services
Reliable, secure and cost-effective
You will learn more about AWS as we go
further in the course!

Amazon Web Services (AWS)

197

Best path to learn AWS!

Cloud applications make use of multiple AWS services.
There is no single path to learn these services
independently.
HOWEVER, we've worked out a simple path!

198

Setting up AWS Account
Create an AWS Account
Setup an IAM user

199

Regions and Zones

200

Regions and Zones

Imagine that your application is deployed in a data center in London
What would be the challenges?

Challenge 1 : Slow access for users from other parts of the world (high latency)
Challenge 2 : What if the data center crashes?

Your application goes down (low availability)

201

Multiple data centers

Let's add in one more data center in London
What would be the challenges?

Challenge 1 : Slow access for users from other parts of the world

Challenge 2 (SOLVED) : What if one data center crashes?
Your application is still available from the other data center

Challenge 3 : What if entire region of London is unavailable?
Your application goes down

202

Multiple regions

Let's add a new region : Mumbai
What would be the challenges?

Challenge 1 (PARTLY SOLVED) : Slow access for users from other parts of the world
You can solve this by adding deployments for your applications in other regions

Challenge 2 (SOLVED) : What if one data center crashes?
Your application is still live from the other data centers

Challenge 3 (SOLVED) : What if entire region of London is unavailable?
Your application is served from Mumbai

203

Regions

Imagine setting up data centers in different regions around the world
Would that be easy?

(Solution) AWS provides 25+ regions around the world (expanding
every year)

204

Regions - Advantages

High Availability
Low Latency
Global Footprint
Adhere to government regulations

205

Each AWS Region consists of multiple AZ's
Each Availability Zone:

Can have One or more discrete data centers
has independent & redundant power, networking &
connectivity

AZs in a Region are connected through low-
latency links
(Advantage) Increase availability and fault
tolerance of applications in the same region

Availability Zones

206

Regions and Availability Zones examples

Region Code Region Availability Zones Availability Zones List

us-east-1 US East (N. Virginia) 6 us-east-1a us-east-1b
us-east-1c us-east-1d
us-east-1e us-east-1f

eu-west-2 Europe (London) 3 eu-west-2a eu-west-2b
eu-west-2c

ap-south-1 Asia Pacific(Mumbai) 3 ap-south-1a ap-south-1b
ap-south-1c

New Regions and AZs are constantly added

207

EC2 Fundamentals

208

Introduction to EC2 (Elastic Compute Cloud)

In corporate data centers, applications are deployed to physical
servers
Where do you deploy applications in the cloud?

Rent virtual machines
EC2 instances - Virtual machines in AWS
EC2 service - Provision EC2 instances or virtual machines

209

Understanding Important Features of EC2

Create and manage lifecycle of EC2 instances
Attach storage to your EC2 instances
Load balancing for multiple EC2 instances
Our Goal: Play with EC2 instances!

210

Reviewing Important EC2 Concepts
Feature Explanation

Amazon Machine Image (AMI) What operating system and what so�ware do you want on the
instance?

Instance Families Choose the right family of hardware (General purpose or
Compute/Storage/Memory optimized or GPU)

Instance Size (t2.nano,
t2.micro,t2.small,t2.medium ...)

Choose the right quantity of hardware (2 vCPUs, 4GB of memory)

Elastic Block Store Attach Disks to EC2 instances (Block Storage)

Security Group Virtual firewall to control incoming and outgoing traffic to/from
AWS resources (EC2 instances, databases etc)

Key pair Public key and a private key
Public key is stored in EC2 instance
Private key is stored by customer

211

IAM: Identity and Access Management
Authentication (the right user?) and
Authorization (the right access?)

Root User: User we created our AWS account with
Credentials: Email address and password

DO NOT user Root User for day to day activities

Create a new IAM User and use the IAM user for regular activities

Things we will do now:
1: Create an IAM Group - Developers - with admin access
2: Create an IAM user - in28minutes_dev - with group Developers

3: Login with IAM user - in28minutes_dev

(Remember) Bookmark Your Account Specific AWS URL

IAM & Best Practices

212

With Great Power comes Great Responsibility
Cloud provides you with ability to create powerful resources
HOWEVER its important to understand the associated costs

5 Best Practices
1: For the first week, monitor the billing dashboard everyday
2: Set Budget Alerts

1: Enable Billing Alerts - My Billing Dashboard > Billing preferences
2: Create Budget Alert - Budgets > Create a Budget > Cost Budget > Alert

3: STOP resources when you are not using them
4: Understand FREE Tier and 12 Month Limits (HARD TO DO)
5: Understand how pricing works for diff. resources (HARD TO DO)

Cloud Best Practices - Managing Costs

213

Cloud Services

214

Do you want to continue running applications in
the cloud, the same way you run them in your data
center?
OR are there OTHER approaches?
You should understand some terminology:

IaaS (Infrastructure as a Service)
PaaS (Platform as a Service)
....

Let's get on a quick journey to understand these!

Cloud Services

215

Use only infrastructure from cloud provider
Ex: Using VM service to deploy your apps/databases

Cloud provider is responsible for:
Hardware, Networking & Virtualization

You are responsible for:
OS upgrades and patches
Application Code and Runtime
Configuring load balancing
Auto scaling
Availability
etc.. (and a lot of things!)

IAAS (Infrastructure as a Service)

216

Use a platform provided by the cloud
Cloud provider is responsible for:

Hardware, Networking & Virtualization

OS (incl. upgrades and patches)

Application Runtime

Auto scaling, Availability & Load balancing etc..

You are responsible for:
Configuration (of Application and Services)

Application code (if needed)

Examples:
Compute: AWS Elastic Beanstalk, Azure App Service, Google App
Engine
Databases: Relational & NoSQL (Amazon RDS, Google Cloud
SQL, Azure SQL Database etc)
Queues, AI, ML, Operations etc!

PAAS (Platform as a Service)

217

Simplest way to deploy and scale your web
applications in AWS

Provides end-to-end web application management
Supports Java, .NET, Node.js, PHP, Ruby, Python, Go,
and Docker applications
No usage charges - Pay for AWS resources
provisioned

Features:
Automatic load balancing
Auto scaling
Managed platform updates

AWS Elastic BeanStalk

218

Applications have millions of users:
Same application is deployed to multiple VMs

How do you simplify creation and
management of multiple VMs?

Auto Scaling Groups
Allow you to create and manage a group of
EC2 instances

How do you distribute traffic across
multiple EC2 instances?

Elastic Load Balancing

Auto Scaling Group and Elastic Load Balancing

219

Microservices

Enterprises are heading towards microservices architectures
Build small focused microservices
Flexibility to innovate and build applications in different programming languages (Go, Java,
Python, JavaScript, etc)

BUT deployments become complex!
How can we have one way of deploying Go, Java, Python or JavaScript ..
microservices?

Enter containers!

220

Create Docker images for each microservice
Docker image has all needs of a microservice:

Application Runtime (JDK or Python or NodeJS)
Application code and Dependencies

Runs the same way on any infrastructure:
Your local machine, Corporate data center or in the Cloud

Advantages
Docker is cloud neutral
Standardization: Simplified Operations

Consistent deployment, monitoring, logging ...

Docker containers are light weight
Compared to Virtual Machines as they do not have a Guest OS

Docker provides isolation for containers

Containers - Docker

221

Requirement : I want 10 instances of
Microservice A container, 15 instances
of Microservice B container and
Typical Features:

Auto Scaling - Scale containers based on
demand
Service Discovery - Help microservices find
one another
Load Balancer - Distribute load among
multiple instances of a microservice

Self Healing - Do health checks and replace
failing instances

Zero Downtime Deployments - Release new
versions without downtime

Container Orchestration

222

Cloud Neutral: Amazon EKS
Kubernetes: Open source container
orchestration
Managed service: Amazon Elastic
Kubernetes Service
EKS does not have a free tier

AWS Specific: Amazon ECS
Amazon Elastic Container Service

Fargate: Serverless ECS/EKS
AWS Fargate does not have a free tier

Container Orchestration Options

223

What do we think about when we develop an application?
Where to deploy? What kind of server? What OS?
How do we take care of scaling and availability of the application?

What if you don't worry about servers and focus ONLY on code?
Enter Serverless

Remember: Serverless does NOT mean "No Servers"

Serverless for me:
You don't worry about infrastructure (ZERO visibility into infrastructure)

Flexible scaling and automated high availability

Most Important: Pay for use
Ideally ZERO REQUESTS => ZERO COST

You focus on code and the cloud managed service takes care of all
that is needed to scale your code to serve millions of requests!

And you pay for requests and NOT servers!

Serverless

224

AWS Lambda

Truly serverless
You don't worry about servers or scaling or availability
You only worry about your code
You pay for what you use

Number of requests

Duration of requests
Memory

225

AWS Lambda - Supported Languages
Java
Go
PowerShell
Node.js
C#
Python,
Ruby
and a lot more...

226

Review - AWS Services for Compute
AWS Service Name Description

Amazon EC2 + ELB Traditional Approach (Virtual Servers + Load Balancing)
Use when you need control over OS OR you want to run custom
so�ware

AWS Elastic Beanstalk Simplify management of web applications and batch
applications
Automatically creates EC2 + ELB(load balancing and auto
scaling)

Amazon Elastic Container Service (Amazon
ECS)

Simplify running of microservices with Docker containers
Run containers in EC2 based ECS Clusters

Amazon Elastic Kubernetes Service
(Amazon EKS)

Run and scale Kubernetes clusters

AWS Fargate Serverless version of ECS and EKS

AWS Lambda Serverless - Do NOT worry about servers

227

You are all set!

228

You have a lot of patience!
Congratulations
You have put your best foot
forward to be a great
developer!
Don't stop your learning
journey!

Keep Learning Every Day!

Good Luck!

Let's clap for you!

229

Recommend the course to
your friends!

Do not forget to review!

Your Success = My Success
Share your success story with
me on LinkedIn (Ranga
Karanam)
Share your success story and
lessons learnt in Q&A with
other learners!

Do Not Forget!

230

231

